Structure-Activity Relationship and Antimicrobial Evaluation of N-Phenylpyrazole Curcumin Derivatives

2020 ◽  
Vol 16 (4) ◽  
pp. 481-488
Author(s):  
Heli Sanghvi ◽  
Satyendra Mishra

Background: Curcumin, one of the most important pharmacologically significant natural products, has gained significant consideration among scientists for decades since its multipharmacological activities. 1, 3-Dicarbonyl moiety of curcumin was found to be accountable for the rapid degradation of curcumin molecule. The aim of present work is to replace 1, 3-dicarbonyl moiety of curcumin by pyrazole and phenylpyrazole derivatives with a view to improving its stability and to investigate the role of substitution in N-phenylpyrazole curcumin on its antibacterial activity against both Gram-positive as well as Gram-negative bacteria. Methods: Pyrazole derivatives of curcumin were prepared by heating curcumin with phenyhydrazine/ substituted phenyhydrazine derivatives in AcOH. The residue was purified by silica gel column chromatography. Structures of purified compounds were confirmed by 1H NMR and Mass spectroscopy. The synthesized compounds were evaluated for their antibacterial activity by the microdilution broth susceptibility test method against gram positive (S. aureus) and gram negative (E. coli). Results: Effects of substitution in N-phenylpyrazole curcumin derivatives against S. aureus and E. coli were studied. The most active N-(3-Nitrophenylpyrazole) curcumin (12) exhibits twenty-fold more potency against S. aureus (MIC: 10μg/mL)) and N-(2-Fluoroophenylpyrazole) curcumin (5) fivefold more potency against E. coli (MIC; 50 μg/mL) than N-phenylpyrazole curcumin (4). Whereas, a remarkable decline in anti-bacterial activity against S. aureus and E. coli was observed when electron donating groups were incorporated in N-phenylpyrazole curcumin (4). Comparative studies of synthesized compounds suggest the effects of electron withdrawing and electron donating groups on unsubstituted phenylpyrazole curcumin (4). Conclusion: The structure-activity relationship (SAR) results indicated that the electron withdrawing and electron donating at N-phenylpyrazole curcumin played key roles for their bacterial inhibitory effects. The results of the antibacterial evaluation showed that the synthesized pyrazole derivatives of curcumin displayed moderate to very high activity in S. aureus. In conclusion, the series of novel curcumin derivatives were designed, synthesized and tested for their antibacterial activities against S. aureus and E. coli. Among them, N-(3-Nitrophenylpyrazole curcumin; 12) was most active against S. aureus (Gram-positive) and N-(2-Fluoroophenylpyrazole) curcumin (5) against E. coli (Gram-negative) bacteria.

2019 ◽  
Vol 18 (5) ◽  
pp. 1147-1155 ◽  
Author(s):  
Rehan Khan ◽  
Melis Özkan ◽  
Aisan Khaligh ◽  
Dönüs Tuncel

Water-dispersible glycosylated poly(2,5′-thienylene)porphyrin-based nanoparticles have the ability to generate singlet oxygen in high yields and exhibit light-triggered antibacterial activity against Gram negative bacteria, E. coli as well as Gram positive bacteria, B. subtilis.


2005 ◽  
Vol 2 (2) ◽  
pp. 109-112
Author(s):  
A. K. Parekh ◽  
K. K. Desai

Some new chalcones have been prepared by Claisen-schmidt condensation of ketone and different aromatic aldehydes. These chalcones on condensation with urea in presence of acid gave Pyrimidine-2-ones. The synthesized compounds have been characterized by elemental analysis, IR and1H NMR spectral data. They have been screened for their antibacterial activity against Gram positive bacteria B. subtillis & S. aureus and Gram negative bacteria E. coli & S. typhi.


2013 ◽  
Vol 2 (1) ◽  
pp. 147-152 ◽  
Author(s):  
AM Bukar ◽  
MA Isa ◽  
HS Bello ◽  
AS Abdullahi

The phytochemical screening and antibacterial activity of ethanolic and Methanolic leaves extract of Vernonia amygdalina against five clinical isolates (Staphylococcus aureus, E. coli, Pseudomonas species, Salmonella species and Proteus species) was determined using standard method of analysis. The results of the antibacterial activity of ethanol, methanol and aqueous extract of leaves of V. amygdalina have diameters ranging between 0.4 to 10mm. The plant extracts from the plants had profound activities against gram-positive than gram negative bacteria. From the above studies, it has clearly indicated that V. amygdalina extract may represent new sources of antibacterial drug, if the phytoactive components are purified and proper dosage are determined for administration. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 147-152 DOI: http://dx.doi.org/10.3126/ije.v2i1.9217


2010 ◽  
Vol 7 (4) ◽  
pp. 1190-1195 ◽  
Author(s):  
Vertika Gautam ◽  
Viney Chawla ◽  
Pankaj k. Sonar ◽  
Shailendra K. Saraf

A series of 1, 3, 5-trisubustituted pyrazole derivatives were synthesized and screened for antimicrobial activity. The compounds(2j-o)were evaluated against two gram-positive and two gram-negative bacteria and one fungus, at concentrations of 10 µg/mL and 50 µg/mL. The compounds were founds to be inactive againstP. aeruginosaandA. nigerbut exhibited moderate activity againstB. subtilis, E. coliandS. aureus. It can be concluded that the newly synthesized compounds possess promising antimicrobial activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Mouna Bouzid ◽  
Raed Abdennabi ◽  
Mohamed Damak ◽  
Majed Kammoun

This paper describes the synthesis of a series of dihydroisoquinoline nitrones by isomerization of the corresponding oxaziridines. Nitrones4a–cwere obtained in excellent yields and high purity by a simple and effective method from the isomerization of oxaziridines. The synthesized compounds were also evaluated for their antibacterial activity against Gram-positive and Gram-negative bacteria and fungus.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1477 ◽  
Author(s):  
Irina A. Shurygina ◽  
Galina F. Prozorova ◽  
Irina S. Trukhan ◽  
Svetlana A. Korzhova ◽  
Tatiana V. Fadeeva ◽  
...  

Novel silver/poly-1-vinyl-1,2,4-triazole nanocomposite materials—possessing antimicrobial activity against Gram-positive and Gram-negative bacteria—have been synthesized and characterized in the solid state and aqueous solution by complex of modern physical-chemical and biologic methods. TEM-monitoring has revealed the main stages of microbial cell (E. coli) destruction by novel nanocomposite. The concept of direct polarized destruction of microbes by nanosilver proposed by the authors allows the relationship between physicochemical and antimicrobial properties of novel nanocomposites. At the same time, it was shown that the nanocomposite was nontoxic to the fibroblast cell culture. Thus, the synthesized nanocomposite combining antibacterial activity against Gram-positive and Gram-negative bacteria as well as the absence of toxic effects on mammalian cells is a promising material for the development of catheters, coatings for medical devices.


2021 ◽  
Vol 33 (11) ◽  
pp. 2662-2666
Author(s):  
Amnuay Noypha ◽  
Paweena Porrawatkul ◽  
Nongyao Teppaya ◽  
Parintip Rattanaburi ◽  
Saksit Chanthai ◽  
...  

Borassus flabellifer vinegar–graphene quantum dots (BFV-GQDs) were successfully synthesized using a pyrolysis method with Borassus flabellifer vinegar (BFV) as the precursor. All the samples were characterized using ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The antibacterial activities of BFV-GQDs against strains of Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) were determined using the agar well diffusion method for preliminary screening, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth macro-dilution method. The zones of inhibition were compared with those of citric acid–graphene quantum dots (CA-GQDs). It was observed that the synthesized BFV-GQDs demonstrated excellent antibacterial activity against Staphylococcus aureus (82.3%) and good antibacterial activity against Escherichia coli (73.3%). The MIC of BFV-GQDs against E. coli was 6.25 mg/mL and S. aureus was 12.5 mg/mL, whereas the MBC of BFV-GQDs against E. coli was 12.5 mg/mL and S. aureus was 25.0 mg/mL.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Love Kumar Soni ◽  
Tamanna Narsinghani ◽  
Rica Jain

A series of 1-aroyl-3-aryl thioureas derivatives were synthesized and evaluated for antibacterial activity. The results indicated that the compounds possessed higher activity against gram-negative bacteria than gram-positive bacteria. Amongst all these compounds, C18 (89.4%) exhibited the greatest antibacterial activity against gram-negative bacteria while C5 (85.6%) displayed maximum antibacterial activity against gram-positive bacteria. Preliminary study of the structure-activity relationship revealed that an electronic factor on aryl rings had a great effect on the antibacterial activity of these compounds.


Author(s):  
Sushma Vashisht ◽  
Manish Pal Singh ◽  
Viney Chawla

The methanolic extract of the resin of Shorea robusta was subjected to investigate its antioxidant and antibacterial properties its utility in free radical mediated diseases including diabetic, cardiovascular, cancer etc. The methanol extract of the resin was tested for antioxidant activity using scavenging activity of DPPH (1,1-diphenyl-2-picrylhydrazil) radical method, reducing power by FeCl3 and antibacterial activity against gram positive and gram negative bacteria using disc diffusion method. The phytochemical screening considered the presence of triterpenoids, tannins and flavoniods. Overall, the plant extract is a source of natural antioxidants which might be helpful in preventing the progress of various oxidative stress mediated diseases including aging. The half inhibition concentration (IC50) of resin extract of Shorea robusta and ascorbic acid were 35.60 µg/ml and 31.91 µg/ml respectively. The resin extract exhibit a significant dose dependent inhibition of DPPH activity. Antibacterial activity was observed against gram positive and gram negative bacteria in dose dependent manner.Key Words: Shorea robusta, antioxidant, antibacterial, Disc-diffusion, DPPH.


Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


Sign in / Sign up

Export Citation Format

Share Document