ChemInform Abstract: Sequential Generation and Utilization of Radical and Anionic Species with a Novel Manganese-Lead Reducing Agent. Three-Component Coupling Reactions of Alkyl Iodides, Electron-Deficient Olefins, and Carbonyl Compounds.

ChemInform ◽  
2010 ◽  
Vol 28 (16) ◽  
pp. no-no
Author(s):  
K. TAKAI ◽  
T. UEDA ◽  
N. IKEDA ◽  
T. MORIWAKE
2019 ◽  
Vol 23 (16) ◽  
pp. 1738-1755
Author(s):  
Humaira Y. Gondal ◽  
Zain M. Cheema ◽  
Abdul R. Raza ◽  
Ahmed Abbaskhan ◽  
M. I. Chaudhary

Following numerous applications of Wittig reaction now functionalized phosphonium salts are gaining attention due to their characteristic properties and diverse reactivity. This review is focused on α-alkoxyalkyl triphenylphosphonium salts: an important class of functionalized phosphonium salts. Alkoxymethyltriphenylphosphonium salts are majorly employed in the carbon homologation of carbonyl compounds and preparation of enol ethers. Their methylene insertion strategy is extensively demonstrated in the total synthesis of a wide range of natural products and other important organic molecules. Similarly enol ethers prepared thereof are important precursors for different organic transformations like Diels-Alder reaction, Claisen rearrangement, Coupling reactions, Olefin metathesis and Nazarov cyclization. Reactivity of these α-alkoxyalkylphosphonium salts have also been studied in the nucleophilic substitution reactions. A distinctive application of this class of phosphonium salts was recently reported in the phenylation of carbonyl compounds under very mild conditions. Synthesis of structurally diverse alkoxymethyltriphenylphosphonium salts with variation in alkoxy groups as well as counter anions are reported in literature. Here we present a detailed account of different synthetic methodologies for the preparation of this unique class of quaternary phosphonium salts and their applications in organic synthesis.


2002 ◽  
Vol 80 (7) ◽  
pp. 779-788 ◽  
Author(s):  
Giancarlo Verardo ◽  
Paola Geatti ◽  
Elena Pol ◽  
Angelo G Giumanini

α-Amino acids and α-amino methyl esters are easily converted to their N-monoalkyl derivatives by a reductive condensation reaction using several carbonyl compounds in the presence of sodium borohydride. This reducing agent has shown a wide versatility with minor but essential procedural variations. The reaction allows the α-monodeuterium labeling of the new N-substituent by use of sodium borodeuteride.Key words: α-amino acid, α-amino methyl esters, sodium borohydride, reductive N-monoalkylation, carbonyl compounds.


ChemInform ◽  
2009 ◽  
Vol 40 (7) ◽  
Author(s):  
Malhari D. Bhor ◽  
Anil G. Panda ◽  
Nitin S. Nandurkar ◽  
Bhalchandra M. Bhanage

Sign in / Sign up

Export Citation Format

Share Document