sequential generation
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 20)

H-INDEX

21
(FIVE YEARS 1)

2022 ◽  
Vol 128 (1) ◽  
Author(s):  
Zhi-Yuan Wei ◽  
Daniel Malz ◽  
J. Ignacio Cirac

2021 ◽  
Author(s):  
PEI ZHANG ◽  
KAHARUDIN DIMYATI ◽  
BILAL NIZAMANI ◽  
MUSTAFA M. NAJM ◽  
S. W. HARUN

Abstract Self-starting Q-switching, Q-switched mode-locking and mode-locking operation modes are achieved sequentially in an all-fiber erbium-doped fiber laser with thulium-doped fiber saturable absorber for the first time. The central wavelengths of Q-switching, Q-switched mode-locking and mode-locking operation modes are 1569.7 nm, 1570.9 nm, and 1572 nm, respectively. The mode-locking operation of the proposed fiber laser generates stable dark soliton with a repetition rate of 0.99 MHz and signal-to-noise ratio of 65 dB. The results validate the capability of generating soliton pulse by doped fiber saturable absorber. Furthermore, the proposed fiber laser is beneficial to the applications of optical communication and signal processing system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ida Lauritsen ◽  
Pernille Ott Frendorf ◽  
Silvia Capucci ◽  
Sophia A. H. Heyde ◽  
Sarah D. Blomquist ◽  
...  

AbstractThe evolution of microorganisms often involves changes of unclear relevance, such as transient phenotypes and sequential development of multiple adaptive mutations in hotspot genes. Previously, we showed that ageing colonies of an E. coli mutant unable to produce cAMP when grown on maltose, accumulated mutations in the crp gene (encoding a global transcription factor) and in genes involved in pyrimidine metabolism such as cmk; combined mutations in both crp and cmk enabled fermentation of maltose (which usually requires cAMP-mediated Crp activation for catabolic pathway expression). Here, we study the sequential generation of hotspot mutations in those genes, and uncover a regulatory role of pyrimidine nucleosides in carbon catabolism. Cytidine binds to the cytidine regulator CytR, modifies the expression of sigma factor 32 (RpoH), and thereby impacts global gene expression. In addition, cytidine binds and activates a Crp mutant directly, thus modulating catabolic pathway expression, and could be the catabolite modulating factor whose existence was suggested by Jacques Monod and colleagues in 1976. Therefore, transcription factor Crp appears to work in concert with CytR and RpoH, serving a dual role in sensing both carbon availability and metabolic flux towards DNA and RNA. Our findings show how certain alterations in metabolite concentrations (associated with colony ageing and/or due to mutations in metabolic or regulatory genes) can drive the evolution in non-growing cells.


2021 ◽  
Vol 118 (33) ◽  
pp. e2102265118
Author(s):  
Pedro Lobos ◽  
Alex Córdova ◽  
Ignacio Vega-Vásquez ◽  
Omar A. Ramírez ◽  
Tatiana Adasme ◽  
...  

The expression of several hippocampal genes implicated in learning and memory processes requires that Ca2+ signals generated in dendritic spines, dendrites, or the soma in response to neuronal stimulation reach the nucleus. The diffusion of Ca2+ in the cytoplasm is highly restricted, so neurons must use other mechanisms to propagate Ca2+ signals to the nucleus. Here, we present evidence showing that Ca2+ release mediated by the ryanodine receptor (RyR) channel type-2 isoform (RyR2) contributes to the generation of nuclear Ca2+ signals induced by gabazine (GBZ) addition, glutamate uncaging in the dendrites, or high-frequency field stimulation of primary hippocampal neurons. Additionally, GBZ treatment significantly increased cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation—a key event in synaptic plasticity and hippocampal memory—and enhanced the expression of Neuronal Per Arnt Sim domain protein 4 (Npas4) and RyR2, two central regulators of these processes. Suppression of RyR-mediated Ca2+ release with ryanodine significantly reduced the increase in CREB phosphorylation and the enhanced Npas4 and RyR2 expression induced by GBZ. We propose that RyR-mediated Ca2+ release induced by neuronal activity, through its contribution to the sequential generation of nuclear Ca2+ signals, CREB phosphorylation, Npas4, and RyR2 up-regulation, plays a central role in hippocampal synaptic plasticity and memory processes.


Climate ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 71
Author(s):  
Edgard Gonzales ◽  
Eusebio Ingol

In 2017, extreme rainfall events occurred in the northern portion of Peru, causing nearly 100,000 victims, according to the National Emergency Operations Center (COEN). This climatic event was attributed to the occurrence of the El Niño Southern Oscillation (ENSO). Therefore, the main objective of this study was to determine and differentiate between the occurrence of canonical ENSO, with a new type of ENSO called “El Niño Costero” (Coastal El Niño). The polynomial equation method was used to analyze the data from the different types of existing ocean indices to determine the occurrence of ENSO. It was observed that the anomalies of sea surface temperature (SST) 2.5 °C (January 2016) generated the “Modoki El Niño” and that the anomaly of SST −0.3 °C (January 2017) generated the “Modoki La Niña”; this sequential generation generated El Niño Costero. This new knowledge about the sui generis origin of El Niño Costero, based on the observations of this analysis, will allow us to identify and obtain important information regarding the occurrence of this event. A new oceanic index called the Pacific Regional Equatorial Index (PREI) was proposed to follow the periodic evolution and forecast with greater precision a new catastrophic event related to the occurrence of El Niño Costero and to implement prevention programs.


Science ◽  
2021 ◽  
pp. eabg0781
Author(s):  
You-Jie Yu ◽  
Feng-Lian Zhang ◽  
Tian-Yu Peng ◽  
Chang-Ling Wang ◽  
Jie Cheng ◽  
...  

Defluorinative functionalization of readily accessible trifluoromethyl groups constitutes an economical route to partially fluorinated molecules. However, controllable replacement of one or two fluorine atoms while maintaining high chemoselectivity remains a formidable challenge. Here we describe a general strategy for sequential C–F bond functionalizations of trifluoroacetamides and trifluoroacetates. The reaction begins with activation of a carbonyl oxygen atom by a 4-dimethylaminopyridine-boryl radical, followed by a spin-center shift to trigger the C–F bond scission. A chemoselectivity-controllable two-stage process enables sequential generation of difluoro- and monofluoroalkyl radicals, which are selectively functionalized with different radical traps to afford diverse fluorinated products. The reaction mechanism and the origin of chemoselectivity were established by experimental and computational approaches.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Johannes Borregaard ◽  
Matthias Christandl ◽  
Daniel Stilck França

AbstractWe describe a resource-efficient approach to studying many-body quantum states on noisy, intermediate-scale quantum devices. We employ a sequential generation model that allows us to bound the range of correlations in the resulting many-body quantum states. From this, we characterize situations where the estimation of local observables does not require the preparation of the entire state. Instead smaller patches of the state can be generated from which the observables can be estimated. This can potentially reduce circuit size and number of qubits for the computation of physical properties of the states. Moreover, we show that the effect of noise decreases along the computation. Our results apply to a broad class of widely studied tensor network states and can be directly applied to near-term implementations of variational quantum algorithms.


Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 38
Author(s):  
Feiming Qian ◽  
Guangzhen Xing ◽  
Ping Yang ◽  
Pengcheng Hu ◽  
Limin Zou ◽  
...  

Laser-induced ultrasonic measurement is a non-contact non-destructive technology that can be employed for the testing and assessment of surface defects. In order to improve the correct identification of defects, the full matrix capture (FMC) and total focusing method (TFM) are applied on the imaging process. FMC data includes A-scans resulting from the combination of all measurement axes defined by the sequential generation and detection of utilized laser beams in the system. In this paper, an aluminium block with four holes whose diameters range from 1 mm to 2.5 mm is assessed through B-scans, the synthetic aperture focusing technique (SAFT) and FMC/TFM. The results demonstrate that the FMC/TFM technology can significantly improve the imaging quality and signal-to-noise ratio (SNR). In addition, this method has higher lateral resolution and larger imaging range compared with traditional B-scans.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
D. Istrati ◽  
Y. Pilnyak ◽  
J. C. Loredo ◽  
C. Antón ◽  
N. Somaschi ◽  
...  

Abstract Light states composed of multiple entangled photons—such as cluster states—are essential for developing and scaling-up quantum computing networks. Photonic cluster states can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources constrained to intrinsically low efficiencies, and an increasing hardware overhead. Here, we report the resource-efficient generation of polarization-encoded, individually-addressable photons in linear cluster states occupying a single spatial mode. We employ a single entangling-gate in a fiber loop configuration to sequentially entangle an ever-growing stream of photons originating from the currently most efficient single-photon source technology—a semiconductor quantum dot. With this apparatus, we demonstrate the generation of linear cluster states up to four photons in a single-mode fiber. The reported architecture can be programmed for linear-cluster states of any number of photons, that are required for photonic one-way quantum computing schemes.


Sign in / Sign up

Export Citation Format

Share Document