phosphonium salts
Recently Published Documents


TOTAL DOCUMENTS

1010
(FIVE YEARS 87)

H-INDEX

47
(FIVE YEARS 7)

2021 ◽  
Vol 23 (1) ◽  
pp. 86
Author(s):  
Vadim V. Ermolaev ◽  
Daria M. Arkhipova ◽  
Vasili A. Miluykov ◽  
Anna P. Lyubina ◽  
Syumbelya K. Amerhanova ◽  
...  

Structure–activity relationships are important for the design of biocides and sanitizers. During the spread of resistant strains of pathogenic microbes, insights into the correlation between structure and activity become especially significant. The most commonly used biocides are nitrogen-containing compounds; the phosphorus-containing ones have been studied to a lesser extent. In the present study, a broad range of sterically hindered quaternary phosphonium salts (QPSs) based on tri-tert-butylphosphine was tested for their activity against Gram-positive (Staphylococcus aureus, Bacillus сereus, Enterococcus faecalis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria and fungi (Candida albicans, Trichophyton mentagrophytes var. gypseum). The cation structure was confirmed to determine their biological activity. A number of QPSs not only exhibit high activity against both Gram-positive and -negative bacteria but also possess antifungal properties. Additionally, the hemolytic and cytotoxic properties of QPSs were determined using blood and a normal liver cell line, respectively. The results show that tri-tert-butyl(n-dodecyl)phosphonium and tri-tert-butyl(n-tridecyl)phosphonium bromides exhibit both low cytotoxicity against normal human cells and high antimicrobial activity against bacteria, including methicillin-resistant strains S. aureus (MRSA). The mechanism of QPS action on microbes is discussed. Due to their high selectivity for pathogens, sterically hindered QPSs could serve as effective tunable biocides.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6350
Author(s):  
Vladimir F. Mironov ◽  
Andrey V. Nemtarev ◽  
Olga V. Tsepaeva ◽  
Mudaris N. Dimukhametov ◽  
Igor A. Litvinov ◽  
...  

It has been shown for a wide range of epoxy compounds that their interaction with triphenylphosphonium triflate occurs with a high chemoselectivity and leads to the formation of (2-hydroxypropyl)triphenylphosphonium triflates 3 substituted in the 3-position with an alkoxy, alkylcarboxyl group, or halogen, which were isolated in a high yield. Using the methodology for the disclosure of epichlorohydrin with alcohols in the presence of boron trifluoride etherate, followed by the substitution of iodine for chlorine and treatment with triphenylphosphine, 2-hydroxypropyltriphenylphosphonium iodides 4 were also obtained. The molecular and supramolecular structure of the obtained phosphonium salts was established, and their high antitumor activity was revealed in relation to duodenal adenocarcinoma. The formation of liposomal systems based on phosphonium salt 3 and L-α-phosphatidylcholine (PC) was employed for improving the bioavailability and reducing the toxicity. They were produced by the thin film rehydration method and exhibited cytotoxic properties. This rational design of phosphonium salts 3 and 4 has promising potential of new vectors for targeted delivery into mitochondria of tumor cells.


2021 ◽  
Vol 13 (17) ◽  
pp. 9862
Author(s):  
Daria M. Arkhipova ◽  
Vadim V. Ermolaev ◽  
Vasili A. Miluykov ◽  
Farida G. Valeeva ◽  
Gulnara A. Gaynanova ◽  
...  

A series of sterically hindered tri-tert-butyl(n-alkyl)phosphonium salts (n-CnH2n+1 with n = 1, 3, 5, 7, 9, 11, 13, 15, 17) was synthesized and systematically studied by 1H, 13C, 31P NMR spectroscopy, ESI-MS, single-crystal X-ray diffraction analysis and melting point measurement. Formation and stabilization palladium nanoparticles (PdNPs) were used to characterize the phosphonium ionic liquid (PIL) nanoscale interaction ability. The colloidal Pd in the PIL systems was described with TEM and DLS analyses and applied in the Suzuki cross-coupling reaction. The PILs were proven to be suitable stabilizers of PdNPs possessing high catalytic activity. The tri-tert-butyl(n-alkyl)phosphonium salts showed a complex nonlinear correlation of the structure–property relationship. The synthesized family of PILs has a broad variety of structural features, including hydrophobic and hydrophilic structures that are entirely expressed in the diversity of their properties


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1058
Author(s):  
Marlena Musik ◽  
Ewa Janus ◽  
Robert Pełech ◽  
Łukasz Sałaciński

Six quaternary phosphonium salts (QPSs) in combination with phosphotungstic heteropolyacid, H3PW12O40, were tested in the epoxidation of rapeseed oil fatty acid methyl esters with a hydrogen peroxide aqueous solution. The QPSs consisted of trihexyl(tetradecyl)phosphonium [P6], tributyl-tetradecylphosphonium [P4] or tetraoctylphosphonium [P8] cation and different anions—chloride (Cl−), bromide (Br−), tetrafluoroborate (BF4−), bis(trifluoromethylsulfonyl)amide (NTf2−), bis(2,4,4-trimethyl-pentyl)phosphinate (Phosf−). The influence of the kind of QPS and temperature on the epoxy number, iodine number, glycol content has been determined. The epoxidation was confirmed using Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) and elemental analysis CHO. Two QPSs with a trihexyltetradecyphosphonium cation—[P6][Fosf] and [P6][Cl]—were selected as the most effective in the studied epoxidation process. The proposed kinetic model takes into consideration the two reactions, namely, epoxidation and epoxy ring opening involving the formation of hydroxyl groups. The rate constants and activation energies for epoxidation fatty acid methyl esters were determined.


2021 ◽  
Author(s):  
Dmitry I. Bugaenko ◽  
Marina A. Yurovskaya ◽  
Alexander V. Karchava
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document