ChemInform Abstract: A Review of Cellulosic Biofuel Commercial-Scale Projects in the United States

ChemInform ◽  
2013 ◽  
Vol 44 (50) ◽  
pp. no-no
Author(s):  
Tristan R. Brown ◽  
Robert C. Brown
2010 ◽  
Vol 10 (4) ◽  
pp. 25-34 ◽  
Author(s):  
david s. shields

From the 1770s to the 1880s agriculturists and cooks sought to develop culinary oils from plants. Thomas Jefferson's attempts to introduce the olive into the agriculture of the United States, as a partial substitute for lard in cookery and as a cheap oleo for the consumption of slaves, met with limited success, even in the southeast, because periodic freezes and high humidity thwarted the development of groves. Southern slaves from West Africa supplied their own oil, derived from benne (Sesamum indicum). Benne oil was merely one feature of an elaborate African-American cuisine employing sesame that included benne soup, benne and greens, benne and hominy, benne candy, and benne wafers. Only the last item has survived as a feature of regional and ethnic cookery. In the first decades of the nineteenth century, planter experimentalists began the commercial scale production of benne oil, establishing it as the primary salad oil and the second favored frying medium in the southern United States. It enjoyed acceptance and moderate commercial success until the refinement of cottonseed oil in the 1870s and 1880s. Cotton seed, a waste product of the south's most vital industry, was turned into a revenue stream as David Wesson and other scientists created a salad oil and frying medium designedly tasteless and odorless, and a cooking fat, hydrogenated cottonseed oil (Cottonlene or Crisco) that could cheaply substitute for lard in baking. With the recent recovery of regional foodways, both the olive and sesame are being revived for use in the neo-southern cookery of the twenty-first century.


Author(s):  
Mark G. Dwyer ◽  
Anthony M. Viselli ◽  
Habib J. Dagher ◽  
Andrew J. Goupee

The abundance of consistent high strength winds off the world’s coastlines and the close proximity to dense population centers has led to development of innovative marine structures to support wind turbines to capture this energy resource. Off the US coast, 60% of the offshore wind lies in deep water (greater than 60m) where the development of Floating Offshore Wind Turbine (FOWT) hull technology will likely be required in lieu of fixed bottom technology such as jacket structures. The United States National Renewable Energy Laboratory (NREL) and the offshore wind community commonly refer to 60m as the transition point between fixed bottom structures and floating structures due to economic reasons. Floating wind turbines deployed in the harsh offshore marine environment require the use of materials that are cost-effective, corrosion resistant, require little maintenance and are highly durable. This has led the University of Maine to develop a concrete hull technology called VolturnUS for full-scale 6MW FOWTs. In this work, experimental testing was conducted to verify the performance of the concrete under operational, serviceability, and extreme loading conditions as required by the American Bureau of Shipping Guide for Building and Classing Floating Offshore Wind Turbines. The testing included structural testing sub-components of the hull and served as experimental verification of American Bureau of Shipping (ABS) concrete design methodology which is currently approved and being used to design the first commercial scale FOWTs in the United States. Two 6MW wind turbines supported on VolturnUS concrete hulls will be used for the New England Aqua Ventus I project. The project is planned to be deployed and connected to the grid by 2019 in the Northeast U.S. and is funded by the US Department of Energy.


Sign in / Sign up

Export Citation Format

Share Document