Understanding barriers to commercial-scale carbon capture and sequestration in the United States: An empirical assessment

Energy Policy ◽  
2013 ◽  
Vol 59 ◽  
pp. 745-761 ◽  
Author(s):  
Lincoln L. Davies ◽  
Kirsten Uchitel ◽  
John Ruple
2018 ◽  
Vol 115 (19) ◽  
pp. 4875-4880 ◽  
Author(s):  
Daniel L. Sanchez ◽  
Nils Johnson ◽  
Sean T. McCoy ◽  
Peter A. Turner ◽  
Katharine J. Mach

Capture and permanent geologic sequestration of biogenic CO2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source–sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO2. A sequestration credit, analogous to existing CCS tax credits, of $60/tCO2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO2 credits, of $90/tCO2 can incent 38 Mt of abatement. Aggregation of CO2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO2. This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States.


2018 ◽  
Author(s):  
Andrew Duguid ◽  
Diana Bacon ◽  
Dan Blankenau ◽  
Dana Divine ◽  
Isis Fukai ◽  
...  

2010 ◽  
Vol 10 (4) ◽  
pp. 25-34 ◽  
Author(s):  
david s. shields

From the 1770s to the 1880s agriculturists and cooks sought to develop culinary oils from plants. Thomas Jefferson's attempts to introduce the olive into the agriculture of the United States, as a partial substitute for lard in cookery and as a cheap oleo for the consumption of slaves, met with limited success, even in the southeast, because periodic freezes and high humidity thwarted the development of groves. Southern slaves from West Africa supplied their own oil, derived from benne (Sesamum indicum). Benne oil was merely one feature of an elaborate African-American cuisine employing sesame that included benne soup, benne and greens, benne and hominy, benne candy, and benne wafers. Only the last item has survived as a feature of regional and ethnic cookery. In the first decades of the nineteenth century, planter experimentalists began the commercial scale production of benne oil, establishing it as the primary salad oil and the second favored frying medium in the southern United States. It enjoyed acceptance and moderate commercial success until the refinement of cottonseed oil in the 1870s and 1880s. Cotton seed, a waste product of the south's most vital industry, was turned into a revenue stream as David Wesson and other scientists created a salad oil and frying medium designedly tasteless and odorless, and a cooking fat, hydrogenated cottonseed oil (Cottonlene or Crisco) that could cheaply substitute for lard in baking. With the recent recovery of regional foodways, both the olive and sesame are being revived for use in the neo-southern cookery of the twenty-first century.


Sign in / Sign up

Export Citation Format

Share Document