Particle Image Velocimetry Compared to CFD Simulation of Stirred Vessels with Helical Coils

2017 ◽  
Vol 89 (4) ◽  
pp. 401-408 ◽  
Author(s):  
Katja Jährling ◽  
Sven Wolinski ◽  
Alexander Stefan ◽  
Hagen Helle ◽  
Volker Bliem ◽  
...  

Author(s):  
Mohammed El Adawy ◽  
Morgan Heikal ◽  
bin Abd. Aziz Abd. Rashid

Abstract RICARDO-VECTIS CFD simulation of the in-cylinder air flow was first validated with those of the experimental results from high-speed particle image velocimetry (PIV) measurements taking cognisant of the mid-cylinder tumble plane. Furthermore, high-speed fuel spray measurements were carried out simultaneously with the intake-generated tumble motion at high valve lift using high-speed time-resolved PIV to chronicle the spatial and time-based development of air/fuel mixture. The effect of injection pressure(32.5 and 35.0 MPa) and pressure variation across the air intake valves(150, 300 and 450 mmH2O) on the interaction process were investigated at valve lift 10 mm where the tumble vortex was fully developed and filled the whole cylinder under steady-state conditions. The PIV results illustrated that the intake generated-tumble motion had a substantial impact on the fuel spray distortion and dispersion inside the cylinder. During the onset of the injection process the tumble motion diverted the spray plume slightly towards the exhaust side before it followed completely the tumble vortex. The fuel spray plume required 7.2 ms, 6.2 ms and 5.9 ms to totally follow the in-cylinder air motion for pressure differences 150, 300 and 450 mmH2O, respectively. Despite, the spray momentum was the same for the same injection pressure, the magnitude of kinetic energy was different for different cases of pressure differences and subsequently the in-cylinder motion strength.



Author(s):  
Guangyao Wang ◽  
Ye Tian ◽  
Spyros A. Kinnas

This work focuses on the study of the flow around a rigid cylinder with both particle image velocimetry (PIV) experiment and computational fluid dynamics (CFD) simulation. PIV measurements of the flow field downstream of the cylinder are first presented. The boundary conditions for CFD simulations are measured in the PIV experiment. Then the PIV flow is compared with both Reynolds-averaged Navier–Stokes (RANS) two-dimensional (2D) and large eddy simulation (LES) three-dimensional (3D) simulations performed with ANSYS fluent. The velocity vector fields and time histories of velocity are analyzed. In addition, the time-averaged velocity profiles and Reynolds stresses are analyzed. It is found that, in general, LES (3D) gives a better prediction of flow characteristics than RANS (2D).





2004 ◽  
Vol 127 (4) ◽  
pp. 697-703 ◽  
Author(s):  
C. W. Lee ◽  
P. C. Palma ◽  
K. Simmons ◽  
S. J. Pickering

Investigations into the single-phase velocity field of a model aeroengine bearing chamber are presented. Adequately resolving the airflow field is important to subsequent computational modeling of two-phase fluid transport and heat transfer characteristics. A specially designed test rig, representing the features of a Rolls Royce Trent series aeroengine bearing chamber, was constructed. Experimental data for the airflow field was obtained using particle image velocimetry (PIV). The results show a strong influence of shaft rotation and chamber geometry on the flow features within the bearing chamber. A computational fluid dynamics (CFD) simulation was carried out using the commercial CFD code FLUENT 6. Flow features were adequately modeled, showing the features of secondary velocities. Turbulence modeling using the differential Reynolds stress (RSM) model shows good agreement with the experimental data.





2005 ◽  
Vol 15 (3) ◽  
pp. 341-362 ◽  
Author(s):  
David T. Sheppard ◽  
Richard M. Lueptow


Sign in / Sign up

Export Citation Format

Share Document