wind environment
Recently Published Documents


TOTAL DOCUMENTS

437
(FIVE YEARS 131)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Vol 35 (6) ◽  
pp. 414-425
Author(s):  
Jongyeong Kim ◽  
Byeonggug Kang ◽  
Yongju Kwon ◽  
Seungbi Lee ◽  
Soonchul Kwon

Overcrowding of high-rise buildings in urban zones change the airflow pattern in the surrounding areas. This causes building wind, which adversely affects the wind environment. Building wind can generate more serious social damage under extreme weather conditions such as typhoons. In this study, to analyze the wind speed and wind speed ratio quantitatively, we installed five anemometers in Haeundae, where high-rise buildings are dense, and conducted on-site monitoring in the event of typhoon OMAIS to determine the characteristics of wind over skyscraper towers surround the other buildings. At point M-2, where the strongest wind speed was measured, the maximum average wind speed in 1 min was observed to be 28.99 m/s, which was 1.7 times stronger than that at the ocean observatory, of 17.0 m/s, at the same time. Furthermore, when the wind speed at the ocean observatory was 8.2 m/s, a strong wind speed of 24 m/s was blowing at point M-2, and the wind speed ratio compared to that at the ocean observatory was 2.92. It is judged that winds 2–3 times stronger than those at the surrounding areas can be induced under certain conditions due to the building wind effect. To verify the degree of wind speed, we introduced the Beaufort wind scale. The Beaufort numbers of wind speed data for the ocean observatory were mostly distributed from 2 to 6, and the maximum value was 8; however, for the observation point, values from 9 to 11 were observed. Through this study, it was possible to determine the characteristics of the wind environment in the area around high-rise buildings due to the building wind effect.


2021 ◽  
Vol 14 (1) ◽  
pp. 380
Author(s):  
Jiuhong Zhang ◽  
Xiaoqian Zhang

In recent decades, increasing urbanization has increased construction land shortages, which has made people pay more attention to the utilization of vertical space. The emergence of more and more high-rise buildings has affected the wind environment at the pedestrian level, especially in residential areas. In this research, the typical patterns of the layouts of residential buildings in Shenyang were investigated and summarized, and the wind environment of the residential areas of different architecture layouts was simulated according to the climatic conditions in Shenyang. After analyzing the simulation results, a typical layout mode for the residential areas in Shenyang was developed to facilitate the establishment of a favorable wind environment. In comparison with different building layouts, a staggered layout of slab buildings, half-enclosed layout of point buildings with openings on the south side, slab-point combined buildings with slab buildings on the north side, and point buildings on the south side were found to be the most suitable layouts for Shenyang’s climate. Thus, this study can provide guidance to designers and urban planners in addition to practical suggestions for residential planning.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 43
Author(s):  
Qiuxia Xu ◽  
Zhen Xu ◽  
Chayn Sun

(1) Background: Evaluation of wind environments regarding pedestrian comfort may unveil potential hotspot areas, particularly in the context of the rapid urban development in China since the 1990s. (2) Method: With primary schools in Nanjing as case studies, the authors simulated the wind environment of schoolyards with the computational fluid dynamics (CFD) approach and evaluated relevant wind comfort criteria. (3) Results: The study showed that the comfortable wind environment of schoolyards generally expanded in three primary schools in summer and winter, and wind speed and the comfortable wind level decreased in some outdoor schoolyard spaces. The results also indicate that the mean wind speed of the schoolyards did not linearly correlate to the building density either within or outside the schools. An increase in the building height of the primary schools could improve the wind comfort of the schoolyard, but the increased building height in the vicinity may worsen the wind comfort in the schools. Meanwhile, a lift-up or step-shaped building design for schools can improve wind comfort in schoolyards. (4) Conclusions: This study provided simulated results and an approach for urban designers to evaluate and improve the wind environment for school children’s outdoor activities.


2021 ◽  
Author(s):  
◽  
Yi He

<p>Wind environment is a key element of sustainable design of architecture. Concerning major trends of climate changes and urbanizations, this research aims to study the relationships between the influences on wind environments and variables related to forms and configurations of contemporary high-rise residential buildings. A novel methodology consisting of parametric design, CFD simulation, and analysis is developed by integrating multiple computational tools, and the evaluation criteria. The integration provides abundant functions and an efficient modelling-simulation-analysis solution for iterative comparison studies. By using a parametric modelling method, building models can be created automatically to help in mesh generation for CFD simulations; the actual influenced areas with different wind velocity ranges can be calculated and compared quantitatively through the calculations of wind-velocity magnitudes from simulation results, at each pixel location on a rendered section. Based on the architectural morphology of Building-Unit Forms (BUFs) and Building-Cluster Configurations (BCCs) in an area classified in China as a Hot-Summer and Cold-Winter Area (HSCWA), the parametric design sets up a bridge between building variables and CFD simulations. A series of representative BUFs and BCCs of high-rise residential buildings are designed for CFD simulations by establishing parametric design system based on the building categorization study. In the wind environment studies, influences of buildings are evaluated based on the wind-velocity magnitudes according to the criteria. The trends of influences can be studied through iterative analysis of several cases with different variables. The mechanisms are illustrated through the air-pressure magnitudes and the wind-flow streamlines. In the wind environment studies of BUFs, relationships between influences on wind environments and building variables of three representative BUFs are studied, including square form, rectangular form, and ‘T’ form. The results of the BUFs studies can be summarized: (1) the influences on wind environments increase as the height and windward length are increased, because more winds are obstructed by the increasing windward surface; (2) the influences on wind environments decrease as the ratio of length and width is increased before the ratio reaches a particular value, because influenced air-pressure area is decreased; (3) the influences on the wind environments decrease as the bulge-part sizes of the ‘T’-form buildings increase, because the increases of bulge-part sizes help to divide winds and lead them to flow around the buildings; (4) the outdoor ventilation is improved as the rotation angle increases, because the non-vertical windward surface promotes the wind flow. In the wind environment studies of BCCs, relationships between influences on wind environments and building variables of three representative BCCs are studied, including scattered configuration, linear configuration, and curvilinear configuration. Results of the BCCs studies can be summarized: (1) the outdoor ventilation of scattered configuration is the best, because it is relatively easy for winds to flow around the scattered building units; (2) the outdoor ventilation can be improved as the longitudinal distance and staggered distance are increased, because the larger building interval promotes winds to flow through the building cluster; (3) for curvilinear configuration, the convex surface on the windward side can promote the wind flow, and the concave surface on the windward side can obstruct the wind flow. The results of the BUFs studies and the BCCs studies all show that the increases of the windward projective areas of buildings can increase the influences on wind environments, because more winds are obstructed. Therefore, the relationships between the influences on wind environments and the building variables of the BUFs and BCCs can be discovered, which can give information to the optimization of wind environments. In summary, the thesis presents a challenging and significant research that contributes original knowledge for wind environment studies in the urban micro climate. And the knowledge is universal and applicable to the practical design projects and also beneficial to the sustainability.</p>


2021 ◽  
Author(s):  
◽  
Yi He

<p>Wind environment is a key element of sustainable design of architecture. Concerning major trends of climate changes and urbanizations, this research aims to study the relationships between the influences on wind environments and variables related to forms and configurations of contemporary high-rise residential buildings. A novel methodology consisting of parametric design, CFD simulation, and analysis is developed by integrating multiple computational tools, and the evaluation criteria. The integration provides abundant functions and an efficient modelling-simulation-analysis solution for iterative comparison studies. By using a parametric modelling method, building models can be created automatically to help in mesh generation for CFD simulations; the actual influenced areas with different wind velocity ranges can be calculated and compared quantitatively through the calculations of wind-velocity magnitudes from simulation results, at each pixel location on a rendered section. Based on the architectural morphology of Building-Unit Forms (BUFs) and Building-Cluster Configurations (BCCs) in an area classified in China as a Hot-Summer and Cold-Winter Area (HSCWA), the parametric design sets up a bridge between building variables and CFD simulations. A series of representative BUFs and BCCs of high-rise residential buildings are designed for CFD simulations by establishing parametric design system based on the building categorization study. In the wind environment studies, influences of buildings are evaluated based on the wind-velocity magnitudes according to the criteria. The trends of influences can be studied through iterative analysis of several cases with different variables. The mechanisms are illustrated through the air-pressure magnitudes and the wind-flow streamlines. In the wind environment studies of BUFs, relationships between influences on wind environments and building variables of three representative BUFs are studied, including square form, rectangular form, and ‘T’ form. The results of the BUFs studies can be summarized: (1) the influences on wind environments increase as the height and windward length are increased, because more winds are obstructed by the increasing windward surface; (2) the influences on wind environments decrease as the ratio of length and width is increased before the ratio reaches a particular value, because influenced air-pressure area is decreased; (3) the influences on the wind environments decrease as the bulge-part sizes of the ‘T’-form buildings increase, because the increases of bulge-part sizes help to divide winds and lead them to flow around the buildings; (4) the outdoor ventilation is improved as the rotation angle increases, because the non-vertical windward surface promotes the wind flow. In the wind environment studies of BCCs, relationships between influences on wind environments and building variables of three representative BCCs are studied, including scattered configuration, linear configuration, and curvilinear configuration. Results of the BCCs studies can be summarized: (1) the outdoor ventilation of scattered configuration is the best, because it is relatively easy for winds to flow around the scattered building units; (2) the outdoor ventilation can be improved as the longitudinal distance and staggered distance are increased, because the larger building interval promotes winds to flow through the building cluster; (3) for curvilinear configuration, the convex surface on the windward side can promote the wind flow, and the concave surface on the windward side can obstruct the wind flow. The results of the BUFs studies and the BCCs studies all show that the increases of the windward projective areas of buildings can increase the influences on wind environments, because more winds are obstructed. Therefore, the relationships between the influences on wind environments and the building variables of the BUFs and BCCs can be discovered, which can give information to the optimization of wind environments. In summary, the thesis presents a challenging and significant research that contributes original knowledge for wind environment studies in the urban micro climate. And the knowledge is universal and applicable to the practical design projects and also beneficial to the sustainability.</p>


2021 ◽  
Author(s):  
Xiang Chen ◽  
Xiang Duan

In the architectural planning and design, the commonly used architectural layout forms are determinant, diagonal, etc. Because of its centralized and symmetrical layout form, determinant architecture has been widely used in urban architectural design. Due to the high density of multi span buildings, the ventilation effect is not good, so this paper mainly studies the influence of multi span building layout on the wind field of urban ordinary residence. In order to optimize the wind environment of the building, a 7-story residential area was modeled and calculated by CFD. Through the analysis of wind field characteristics at different building heights, the results show that the total wind speed in Z direction of the building is the smallest, about 3.354 m/s; At the same time, the overall wind pressure values are within 5Pa of the standard wind pressure difference, but we still need to pay close attention to the possible environmental impact at the outlet of the determinant residence.


2021 ◽  
Author(s):  
Huifang Liu ◽  
Yi Hu ◽  
Yang Wang

Based on the common forms of window opening in board hotels, PHOENICS software and CFD technology were used to simulate a variety of indoor wind environment. The open area, height of window sill, window form, position and shape of the window were varied for the simulation. The freshness of the air, relative to the appropriate wind speed, and the number of ventilation in the bathroom were adopted to evaluate the strategy analysis of the ventilation from different forms of windows. Suggestion strategy was given according to different needs for specific window.


Author(s):  
Meng Gao ◽  
Lubingbing Zhang ◽  
Pingan Ni ◽  
Yongwang Zhang ◽  
Wanjiang Wang

Sign in / Sign up

Export Citation Format

Share Document