scholarly journals Direct Proof of Volatile and Adsorbed Hydrocarbons on Solid Catalysts by Complementary NMR Methods 

Author(s):  
Swen Lang ◽  
Michael Dyballa ◽  
Yvonne Traa ◽  
Deven Estes ◽  
Elias Klemm ◽  
...  
Author(s):  
M.L.A. Dass ◽  
T.A. Bielicki ◽  
G. Thomas ◽  
T. Yamamoto ◽  
K. Okazaki

Lead zirconate titanate, Pb(Zr,Ti)O3 (PZT), ceramics are ferroelectrics formed as solid solutions between ferroelectric PbTiO3 and ant iferroelectric PbZrO3. The subsolidus phase diagram is shown in figure 1. PZT transforms between the Ti-rich tetragonal (T) and the Zr-rich rhombohedral (R) phases at a composition which is nearly independent of temperature. This phenomenon is called morphotropism, and the boundary between the two phases is known as the morphotropic phase boundary (MPB). The excellent piezoelectric and dielectric properties occurring at this composition are believed to.be due to the coexistence of T and R phases, which results in easy poling (i.e. orientation of individual grain polarizations in the direction of an applied electric field). However, there is little direct proof of the coexistence of the two phases at the MPB, possibly because of the difficulty of distinguishing between them. In this investigation a CBD method was found which would successfully differentiate between the phases, and this was applied to confirm the coexistence of the two phases.


1962 ◽  
Vol 41 (3) ◽  
pp. 474-480 ◽  
Author(s):  
Otto Wegelius ◽  
E. J. Jokinen

ABSTRACT In all previous investigations on experimental exophthalmos, heterologous thyrotrophic pituitary extracts have been used. These protein hormones stimulate antihormone formation in the test animals. Cortisone has been reported to effectively block antibody formation. In addition, it has been shown to potentiate TSH-induced exophthalmos in guinea-pigs. With rabbits as test animals, the hexosamine content of the orbital tissues was determined and used as an index of exophthalmos development and at the same time the antibody titres in the sera were followed. TSH injections for six weeks led to a highly significant accumulation of hexosamine in the retrobulbar connective tissue and in the extraocular muscles, i. e. an increase of up to 400% as compared with the control animals. At the same time a significant rise in antihormonal titres was detectable in the sera. Concomitant treatment with cortisone brought about an equal or higher accumulation of hexosamine but significantly lower antibody titres. The known opposite peripheral actions of TSH and cortisone can be reconciled with the synergy in producing experimental exophthalmos by attributing the synergetic action of cortisone to the blocking of antihormone formation. If less antihormones are produced, the effect of TSH is enhanced. Our experiments do not provide direct proof for this hypothesis. High hexosamine values in the orbit and low antihormone titres in the serum are, however, concomitant phenomena.


2020 ◽  
Vol 27 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background: NMR spectroscopy is one of the most powerful tools to study the structure and interaction properties of peptides and proteins from a dynamic perspective. Knowing the bioactive conformations of peptides is crucial in the drug discovery field to design more efficient analogue ligands and inhibitors of protein-protein interactions targeting therapeutically relevant systems. Objective: This review provides a toolkit to investigate peptide conformational properties by NMR. Methods: Articles cited herein, related to NMR studies of peptides and proteins were mainly searched through Pubmed and the web. More recent and old books on NMR spectroscopy written by eminent scientists in the field were consulted as well. Results: The review is mainly focused on NMR tools to gain the 3D structure of small unlabeled peptides. It is more application-oriented as it is beyond its goal to deliver a profound theoretical background. However, the basic principles of 2D homonuclear and heteronuclear experiments are briefly described. Protocols to obtain isotopically labeled peptides and principal triple resonance experiments needed to study them, are discussed as well. Conclusion: NMR is a leading technique in the study of conformational preferences of small flexible peptides whose structure can be often only described by an ensemble of conformations. Although NMR studies of peptides can be easily and fast performed by canonical protocols established a few decades ago, more recently we have assisted to tremendous improvements of NMR spectroscopy to investigate instead large systems and overcome its molecular weight limit.


2015 ◽  
Vol 19 (8) ◽  
pp. 681-694 ◽  
Author(s):  
Xian-Dong Lang ◽  
Xiao-Fang Liu ◽  
Liang-Nian He

1995 ◽  
Vol 60 (1) ◽  
pp. 104-114 ◽  
Author(s):  
Boyd L. Earl ◽  
Richard L. Titus

Previous reports on the thermal or CO2-laser induced decomposition of trichloroethylene have identified only one condensible product, hexachlorobenzene (in addition to HCl and mono- and dichloroacetylene). We have found that trichloroethylene vapor exposed to cw irradiation on the P(24) line of the (001 - 100) band of the CO2 laser at incident power levels from 8 - 17 W produces numerous products, of which the 13 major ones have been identified using IR, GC/MS, GC/FTIR, and NMR methods. All of these products have 4, 6, or 8 carbons, are highly unsaturated, and are completely chlorinated or contain a single hydrogen. C4HCl5 and C6Cl6 isomers (three of each) account for S 55% to 85% of total products (based on peak areas in the total ion chromatograms in GC/MS runs), depending on reaction conditions. In addition to characterizing the products, we discuss the dependence of the product distribution on laser power, irradiation time, and cell geometry, and we outline a possible mechanism.


Sign in / Sign up

Export Citation Format

Share Document