Heat and mass transfer to spheres in high-temperature surroundings

1967 ◽  
Vol 45 (4) ◽  
pp. 181-188 ◽  
Author(s):  
C. Narasimhan ◽  
W. H. Gauvin
2014 ◽  
Vol 6 ◽  
pp. 865856 ◽  
Author(s):  
Roman S. Volkov ◽  
Olga V. Vysokomornaya ◽  
Genii V. Kuznetsov ◽  
Pavel A. Strizhak

The macroscopic regularities of heat and mass transfer and phase transitions during water droplets motion through high-temperature (more than 1000 K) gases have been investigated numerically and experimentally. Water droplet evaporation rates have been established. Gas and water vapors concentrations and also temperature values of gas-vapor mixture in small neighborhood and water droplet trace have been singled out. Possible mechanisms of droplet coagulation in high-temperature gas area have been determined. Experiments have been carried out with the optical methods of two-phase gas-vapor-droplet mixtures diagnostics (“Particle Image Velocimetry” and “Interferometric Particle Imaging”) usage to assess the adequateness of developed heat and mass transfer models and the results of numerical investigations. The good agreement of numerical and experimental investigation results due to integral characteristics of water droplet evaporation has been received.


2015 ◽  
Vol 16 (2) ◽  
pp. 347-350
Author(s):  
S.G. Orlovska ◽  
A.O. Odnostalko ◽  
F.F. Karimova ◽  
M.S. Shkoropado

 The paper presents a study of high-temperature heat and mass transfer and combustion kinetics of octadecane particle in room temperature air taking in consideration fuel heating, melting and evaporation. The consecutive stages of droplet combustion are described. Burning rate constants and flame heights are determined for droplets with different initial diameters


Sign in / Sign up

Export Citation Format

Share Document