scholarly journals Myosin Id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells

Cytoskeleton ◽  
2015 ◽  
Vol 72 (10) ◽  
pp. 503-516 ◽  
Author(s):  
Peter S. Hegan ◽  
Eric Ostertag ◽  
Aron M. Geurts ◽  
Mark S. Mooseker
2016 ◽  
Vol 3 (10) ◽  
pp. 160658 ◽  
Author(s):  
Amy S. Findlay ◽  
D. Alessio Panzica ◽  
Petr Walczysko ◽  
Amy B. Holt ◽  
Deborah J. Henderson ◽  
...  

This study shows that the core planar cell polarity (PCP) genes direct the aligned cell migration in the adult corneal epithelium, a stratified squamous epithelium on the outer surface of the vertebrate eye. Expression of multiple core PCP genes was demonstrated in the adult corneal epithelium. PCP components were manipulated genetically and pharmacologically in human and mouse corneal epithelial cells in vivo and in vitro . Knockdown of VANGL2 reduced the directional component of migration of human corneal epithelial (HCE) cells without affecting speed. It was shown that signalling through PCP mediators, dishevelled, dishevelled-associated activator of morphogenesis and Rho-associated protein kinase directs the alignment of HCE cells by affecting cytoskeletal reorganization. Cells in which VANGL2 was disrupted tended to misalign on grooved surfaces and migrate across, rather than parallel to the grooves. Adult corneal epithelial cells in which Vangl2 had been conditionally deleted showed a reduced rate of wound-healing migration. Conditional deletion of Vangl2 in the mouse corneal epithelium ablated the normal highly stereotyped patterns of centripetal cell migration in vivo from the periphery (limbus) to the centre of the cornea. Corneal opacity owing to chronic wounding is a major cause of degenerative blindness across the world, and this study shows that Vangl2 activity is required for directional corneal epithelial migration.


2021 ◽  
Author(s):  
Ilya Chuykin ◽  
Keiji Itoh ◽  
Kyeongmi Kim ◽  
Sergei Y. Sokol

The orientation of epithelial cells in the plane of the tissue, known as planar cell polarity (PCP), is regulated by interactions of asymmetrically localized PCP protein complexes. In the Xenopus neural plate, Van Gogh-like2 (Vangl2) and Prickle3 (Pk3) proteins form a complex at the anterior cell boundaries, but how this complex is regulated in vivo remains largely unknown. Here we use proximity biotinylation and crosslinking approaches to show that Vangl2-Pk3 association is inhibited by Frizzled3 (Fz3), a core PCP protein that is specifically expressed in the neuroectoderm and is essential for the establishment of PCP in this tissue. This inhibition required Fz3-dependent Vangl2 phosphorylaton. Consistent with our observations, the complex of Pk3 with nonphosphorylatable Vangl2 did not polarize in the neural plate. These findings provide evidence for in vivo regulation of Vangl2-Pk3 complex formation and localization by a Frizzled receptor.


2018 ◽  
Vol 217 (5) ◽  
pp. 1633-1641 ◽  
Author(s):  
Sun K. Kim ◽  
Siwei Zhang ◽  
Michael E. Werner ◽  
Eva J. Brotslaw ◽  
Jennifer W. Mitchell ◽  
...  

Most epithelial cells polarize along the axis of the tissue, a feature known as planar cell polarity (PCP). The initiation of PCP requires cell–cell signaling via the noncanonical Wnt/PCP pathway. Additionally, changes in the cytoskeleton both facilitate and reflect this polarity. We have identified CLAMP/Spef1 as a novel regulator of PCP signaling. In addition to decorating microtubules (MTs) and the ciliary rootlet, a pool of CLAMP localizes at the apical cell cortex. Depletion of CLAMP leads to the loss of PCP protein asymmetry, defects in cilia polarity, and defects in the angle of cell division. Additionally, depletion of CLAMP leads to a loss of the atypical cadherin-like molecule Celrs2, suggesting that CLAMP facilitates the stabilization of junctional interactions responsible for proper PCP protein localization. Depletion of CLAMP also affects the polarized organization of MTs. We hypothesize that CLAMP facilitates the establishment of cell polarity and promotes the asymmetric accumulation of MTs downstream of the establishment of proper PCP.


BioEssays ◽  
2016 ◽  
Vol 38 (12) ◽  
pp. 1234-1245 ◽  
Author(s):  
Jose Maria Carvajal-Gonzalez ◽  
Sonia Mulero-Navarro ◽  
Marek Mlodzik

2021 ◽  
Author(s):  
Ilya Chuykin ◽  
Kyeongmi Kim ◽  
Sergei Sokol

The orientation of epithelial cells in the plane of the tissue, known as planar cell polarity (PCP), is regulated by interactions of asymmetrically localized PCP protein complexes. In the Xenopus neural plate, Van Gogh-like2 (Vangl2) and Prickle3 (Pk3) proteins form a complex at the anterior cell boundaries, but how this complex is regulated in vivo remains largely unknown. Here we show that Vangl2-Pk3 association is inhibited by Frizzled3 (Fz3), a core PCP protein that is specifically expressed in the neuroectoderm and is essential for the establishment of PCP in this tissue. Proximity biotinylation and crosslinking studies revealed that the Vangl2-Pk3 interaction is suppressed by overexpressed Fz3, but enhanced in Fz3 morphants. In addition, Fz3 induced Vangl2 phosphorylation on T76 and T78, and this phosphorylation was required for Fz3-mediated inhibition of Vangl2-Pk3 complex formation. Consistent with this observation, the complex of Pk3 with nonphosphorylatable Vangl2 was not polarized in the neural plate. These findings provide evidence for in vivo regulation of Vangl2-Pk3 complex formation and localization by a Frizzled receptor.


Sign in / Sign up

Export Citation Format

Share Document