scholarly journals CLAMP/Spef1 regulates planar cell polarity signaling and asymmetric microtubule accumulation in the Xenopus ciliated epithelia

2018 ◽  
Vol 217 (5) ◽  
pp. 1633-1641 ◽  
Author(s):  
Sun K. Kim ◽  
Siwei Zhang ◽  
Michael E. Werner ◽  
Eva J. Brotslaw ◽  
Jennifer W. Mitchell ◽  
...  

Most epithelial cells polarize along the axis of the tissue, a feature known as planar cell polarity (PCP). The initiation of PCP requires cell–cell signaling via the noncanonical Wnt/PCP pathway. Additionally, changes in the cytoskeleton both facilitate and reflect this polarity. We have identified CLAMP/Spef1 as a novel regulator of PCP signaling. In addition to decorating microtubules (MTs) and the ciliary rootlet, a pool of CLAMP localizes at the apical cell cortex. Depletion of CLAMP leads to the loss of PCP protein asymmetry, defects in cilia polarity, and defects in the angle of cell division. Additionally, depletion of CLAMP leads to a loss of the atypical cadherin-like molecule Celrs2, suggesting that CLAMP facilitates the stabilization of junctional interactions responsible for proper PCP protein localization. Depletion of CLAMP also affects the polarized organization of MTs. We hypothesize that CLAMP facilitates the establishment of cell polarity and promotes the asymmetric accumulation of MTs downstream of the establishment of proper PCP.

Author(s):  
Amelia J. Kim ◽  
Erik E. Griffin

PLK1 is a conserved mitotic kinase that is essential for the entry into and progression through mitosis. In addition to its canonical mitotic functions, recent studies have characterized a critical role for PLK-1 in regulating the polarization and asymmetric division of the one-cell C. elegans embryo. Prior to cell division, PLK-1 regulates both the polarization of the PAR proteins at the cell cortex and the segregation of cell fate determinants in the cytoplasm. Following cell division, PLK-1 is preferentially inherited to one daughter cell where it acts to regulate the timing of centrosome separation and cell division. PLK1 also regulates cell polarity in asymmetrically dividing Drosophila neuroblasts and during mammalian planar cell polarity, suggesting it may act broadly to connect cell polarity and cell cycle mechanisms.


2019 ◽  
Author(s):  
Priyanka Dutta ◽  
Devang Odedra ◽  
Christian Pohl

AbstractFormation of the anteroposterior and dorsoventral body axis in the Caenorhabditis elegans embryo depends on cortical actomyosin flows and advection of polarity determinants. The role of this patterning mechanism in tissue polarization immediately after formation of cell-cell contacts is not fully understood. Here, we demonstrate that planar cell polarity (PCP) is established in the C. elegans embryo at the time of left-right (l/r) symmetry breaking. At this stage, centripetal cortical flows asymmetrically and differentially advect anterior polarity determinants (aPARs) PAR-3, PAR-6 and PKC-3 from cell-cell contacts to the medial cortex, which results in their unmixing from apical myosin. Advection generally requires GSK-3 and CDC-42, while advection of PAR-6 specifically depends on the RhoGAP PAC-1. Concurrent asymmetric retention of PAR-3, E-cadherin/HMR-1, PAC-1 and opposing retention of the antagonistic Wnt pathway components APC/APR-1 and Frizzled/MOM-5 at apical cell-cell contacts leads to planar asymmetries. The most obvious mark of PCP, asymmetric retention of PAR-3 at posterior cell-cell contacts on the left side of the embryo, is required for proper cytokinetic cell intercalation. Hence, our data uncover how PCP can be established through Wnt signaling as well as dissociation and planar asymmetric retention of aPARs mediated by distinct Rho GTPases and their regulators.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriel L. Galea ◽  
Eirini Maniou ◽  
Timothy J. Edwards ◽  
Abigail R. Marshall ◽  
Ioakeim Ampartzidis ◽  
...  

AbstractPost-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neighbours. This inhibition of apical constriction involves diminished myosin-II localisation on neighbour cell borders and shortening of basally-extending microtubule tails, which are known to facilitate apical constriction. Vangl2-deleted neuroepithelial cells themselves continue to apically constrict and preferentially recruit myosin-II to their apical cell cortex rather than to apical cap localisations. Such non-autonomous effects can explain how post-zygotic mutations affecting a minority of cells can cause catastrophic failure of morphogenesis leading to clinically important birth defects.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yifei Zhang ◽  
Xing Wang ◽  
Hitoshi Matakatsu ◽  
Richard Fehon ◽  
Seth S Blair

Much of the Hippo and planar cell polarity (PCP) signaling mediated by the Drosophila protocadherin Fat depends on its ability to change the subcellular localization, levels and activity of the unconventional myosin Dachs. To better understand this process, we have performed a structure-function analysis of Dachs, and used this to identify a novel and important mediator of Fat and Dachs activities, a Dachs-binding SH3 protein we have named Dlish. We found that Dlish is regulated by Fat and Dachs, that Dlish also binds Fat and the Dachs regulator Approximated, and that Dlish is required for Dachs localization, levels and activity in both wild type and fat mutant tissue. Our evidence supports dual roles for Dlish. Dlish tethers Dachs to the subapical cell cortex, an effect partly mediated by the palmitoyltransferase Approximated under the control of Fat. Conversely, Dlish promotes the Fat-mediated degradation of Dachs.


2018 ◽  
Author(s):  
Miguel Salinas-Saavedra ◽  
Mark Q Martindale

ABSTRACTIn bilaterians and cnidarians, embryonic and epithelial cell-polarity are regulated by the interactions between Par proteins, Wnt/PCP signaling pathway, and cell-cell adhesion. Par proteins are highly conserved across Metazoa, including ctenophores. But strikingly, ctenophore genomes lack components of the Wnt/PCP pathway and cell-cell adhesion complexes; raising the question if ctenophore cells are polarized by mechanisms involving Par proteins. Here, by using immunohistochemistry and live-cell imaging overexpression of specific mRNAs, we describe for the first time the subcellular localization of selected Par proteins in blastomeres and epithelial cells during the embryogenesis of the ctenophore Mnemiopsis leidyi. We show that these proteins distribute differently compared to what has been described for other animals, even though they segregate in a host-specific fashion when expressed in cnidarian embryos. This differential localization might be related to the emergence of different junctional complexes during metazoan evolution. Data obtained here challenge the ancestry of the apicobasal cell polarity and raise questions about the homology of epithelial tissue across the Metazoa.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Erin Newman-Smith ◽  
Matthew J Kourakis ◽  
Wendy Reeves ◽  
Michael Veeman ◽  
William C Smith

The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Wash out of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line, aimless, myosin polarization is disrupted in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization.


Cytoskeleton ◽  
2015 ◽  
Vol 72 (10) ◽  
pp. 503-516 ◽  
Author(s):  
Peter S. Hegan ◽  
Eric Ostertag ◽  
Aron M. Geurts ◽  
Mark S. Mooseker

2002 ◽  
Vol 2 ◽  
pp. 434-454 ◽  
Author(s):  
Jeffrey D. Axelrod ◽  
Helen McNeill

Epithelial cells and other groups of cells acquire a polarity orthogonal to their apical–basal axes, referred to as Planar Cell Polarity (PCP). The process by which these cells become polarized requires a signaling pathway using Frizzled as a receptor. Responding cells sense cues from their environment that provide directional information, and they translate this information into cellular asymmetry. Most of what is known about PCP derives from studies in the fruit fly,Drosophila. We review what is known about how cells translate an unknown signal into asymmetric cytoskeletal reorganization. We then discuss how the vertebrate processes of convergent extension and cochlear hair-cell development may relate toDrosophilaPCP signaling.


Sign in / Sign up

Export Citation Format

Share Document