The role of ?1 integrin in spreading and myofibrillogenesis in neonatal rat cardiomyocytes in vitro

1992 ◽  
Vol 21 (2) ◽  
pp. 87-100 ◽  
Author(s):  
Lula L. Hilenski ◽  
Ma Xuehui ◽  
Nancy Vinson ◽  
Louis Terracio ◽  
Thomas K. Borg
1995 ◽  
Vol 76 (6) ◽  
pp. 1071-1078 ◽  
Author(s):  
Douwe E. Atsma ◽  
E.M. Lars Bastiaanse ◽  
Anastazia Jerzewski ◽  
Lizet J.M. Van der Valk ◽  
Arnoud Van der Laarse

2005 ◽  
Vol 67 (2) ◽  
pp. 216-224 ◽  
Author(s):  
N LALEVEE ◽  
M REBSAMEN ◽  
S BARRERELEMAIRE ◽  
E PERRIER ◽  
J NARGEOT ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xu Yan ◽  
Jinwen Tian ◽  
Hongjin Wu ◽  
Yuna Liu ◽  
Jianxun Ren ◽  
...  

Aim. To investigate the effect of Ginsenoside Rb1 (GS-Rb1) on hypoxia/ischemia (H/I) injury in cardiomyocytesin vitroand the mitochondrial apoptotic pathway mediated mechanism.Methods. Neonatal rat cardiomyocytes (NRCMs) for the H/I groups were kept in DMEM without glucose and serum, and were placed into a hypoxic jar for 24 h. GS-Rb1 at concentrations from 2.5 to 40 µM was given during hypoxic period for 24 h. NRCMs injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. Cell apoptosis, ROS accumulation, and mitochondrial membrane potential (MMP) were assessed by flow cytometry. Cytosolic translocation of mitochondrial cytochrome c and Bcl-2 family proteins were determined by Western blot. Caspase-3 and caspase-9 activities were determined by the assay kit.Results. GS-Rb1 significantly reduced cell death and LDH leakage induced by H/I. It also reduced H/I induced NRCMs apoptosis induced by H/I, in accordance with a minimal reactive oxygen species (ROS) burst. Moreover, GS-Rb1 markedly decreased the translocation of cytochrome c from the mitochondria to the cytosol, increased the Bcl-2/ Bax ratio, and preserved mitochondrial transmembrane potential (ΔΨm). Its administration also inhibited activities of caspase-9 and caspase-3.Conclusion. Administration of GS-Rb1 during H/Iin vitrois involved in cardioprotection by inhibiting apoptosis, which may be due to inhibition of the mitochondrial apoptotic pathway.


Life Sciences ◽  
2007 ◽  
Vol 81 (13) ◽  
pp. 1042-1049 ◽  
Author(s):  
Yan-Xia Pan ◽  
An-Jing Ren ◽  
Juan Zheng ◽  
Wei-Fang Rong ◽  
Hong Chen ◽  
...  

2019 ◽  
Vol 518 (3) ◽  
pp. 500-505 ◽  
Author(s):  
Ashraf Yusuf Rangrez ◽  
Lucia Kilian ◽  
Katharina Stiebeling ◽  
Sven Dittmann ◽  
Eric Schulze-Bahr ◽  
...  

2013 ◽  
Vol 34 (4) ◽  
pp. 487-495 ◽  
Author(s):  
Jia-lin Duan ◽  
Jing-wen Wang ◽  
Yue Guan ◽  
Ying Yin ◽  
Guo Wei ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lili Xiao ◽  
Yulei Gu ◽  
Gaofei Ren ◽  
Linlin Chen ◽  
Liming Liu ◽  
...  

Evidence suggests that miR-146a is implicated in the pathogenesis of cardiovascular diseases; however, the role of miR-146a in myocardial ischaemia reperfusion (I/R) injury is unclear. The aim of this study was to explore the functional role of miR-146a in myocardial ischaemia reperfusion injury and the underlying mechanism. C57BL/6J mice were subjected to 45 min of ischaemia and 1 week of reperfusion to establish a myocardial I/R injury model. A miR-146a mimic (0.5 mg/kg) was administered intravenously at the beginning of the ischaemia process. Neonatal rat cardiomyocytes were also subjected to hypoxia/reperfusion (H/R). Cells were treated with the miR-146a mimic or antagonist. As a result, the miR-146a mimic attenuated H/R-induced cardiomyocyte injury, as evidenced by increased cell viability and reduced lactate dehydrogenase (LDH) levels. In addition, the miR-146a mimic inhibited oxidative stress in cells suffering from H/R injury. Moreover, the miR-146a antagonist exerted adverse effects in vitro. In mice with myocardial I/R injury, the miR-146a mimic preserved cardiac function and reduced the infarction area and fibrosis. Moreover, the miR-146a mimic decreased the inflammatory response and reactive oxygen species (ROS) accumulation in mouse hearts. Mechanistically, we found that miR-146a directly regulated the transcription of NOX4, which subsequently affected P38 signalling in cardiomyocytes. When we knocked down NOX4, the effects of the miR-146a antagonist in worsening the cell condition were counteracted in in vitro experiments. Taken together, the results suggest that miR-146a protects against myocardial ischaemia reperfusion injury by inhibiting NOX4 signalling. The miR-146a mimic may become a potential therapeutic approach for patients with myocardial ischaemia reperfusion.


Sign in / Sign up

Export Citation Format

Share Document