scholarly journals Pre-Bötzinger complex receives glutamatergic innervation from galaninergic and other retrotrapezoid nucleus neurons

2012 ◽  
Vol 520 (5) ◽  
pp. 1047-1061 ◽  
Author(s):  
Genrieta Bochorishvili ◽  
Ruth L. Stornetta ◽  
Melissa B. Coates ◽  
Patrice G. Guyenet
2012 ◽  
Vol 107 (2) ◽  
pp. 603-617 ◽  
Author(s):  
Mackenzie M. Ott ◽  
Sarah C. Nuding ◽  
Lauren S. Segers ◽  
Russell O'Connor ◽  
Kendall F. Morris ◽  
...  

Ventrolateral respiratory column (VRC) circuits that modulate breathing in response to changes in central chemoreceptor drive are incompletely understood. We employed multielectrode arrays and spike train correlation methods to test predictions of the hypothesis that pre-Bötzinger complex (pre-BötC) and retrotrapezoid nucleus/parafacial (RTN-pF) circuits cooperate in chemoreceptor-evoked tuning of ventral respiratory group (VRG) inspiratory neurons. Central chemoreceptors were selectively stimulated by injections of CO2-saturated saline into the vertebral artery in seven decerebrate, vagotomized, neuromuscularly blocked, and artificially ventilated cats. Among sampled neurons in the Bötzinger complex (BötC)-to-VRG region, 70% (161 of 231) had a significant change in firing rate after chemoreceptor stimulation, as did 70% (101 of 144) of the RTN-pF neurons. Other responsive neurons (24 BötC-VRG; 11 RTN-pF) had a change in the depth of respiratory modulation without a significant change in average firing rate. Seventy BötC-VRG chemoresponsive neurons triggered 189 offset-feature correlograms (96 peaks; 93 troughs) with at least one responsive BötC-VRG cell. Functional input from at least one RTN-pF cell could be inferred for 45 BötC-VRG neurons (19%). Eleven RTN-pF cells were correlated with more than one BötC-VRG target neuron, providing evidence for divergent connectivity. Thirty-seven RTN-pF neurons, 24 of which were chemoresponsive, were correlated with at least one chemoresponsive BötC-VRG neuron. Correlation linkage maps and spike-triggered averages of phrenic nerve signals suggest transmission of chemoreceptor drive via a multipath network architecture: RTN-pF modulation of pre-BötC-VRG rostral-to-caudal excitatory inspiratory neuron chains is tuned by feedforward and recurrent inhibition from other inspiratory neurons and from “tonic” expiratory neurons.


2017 ◽  
Vol 596 (15) ◽  
pp. 3245-3269 ◽  
Author(s):  
Vishaal Rajani ◽  
Yong Zhang ◽  
Venkatesh Jalubula ◽  
Vladimir Rancic ◽  
Shahriar SheikhBahaei ◽  
...  

2011 ◽  
Vol 163 (1-2) ◽  
pp. 131
Author(s):  
B. Falquetto ◽  
A.C. Takakura ◽  
T.S. Moreira

2003 ◽  
Vol 90 (3) ◽  
pp. 1635-1642 ◽  
Author(s):  
Ilya A. Rybak ◽  
Krzysztof Ptak ◽  
Natalia A. Shevtsova ◽  
Donald R. McCrimmon

Rapidly inactivating and persistent sodium currents have been characterized in acutely dissociated neurons from the area of rostroventrolateral medulla that included the pre-Bötzinger Complex. As demonstrated in many studies in vitro, this area can generate endogenous rhythmic bursting activity. Experiments were performed on neonate and young rats (P1-15). Neurons were investigated using the whole cell voltage-clamp technique. Standard activation and inactivation protocols were used to characterize the steady-state and kinetic properties of the rapidly inactivating sodium current. Slow depolarizing ramp protocols were used to characterize the noninactivating sodium current. The “window” component of the rapidly inactivating sodium current was calculated using mathematical modeling. The persistent sodium current was revealed by subtraction of the window current from the total noninactivating sodium current. Our results provide evidence of the presence of persistent sodium currents in neurons of the rat rostroventrolateral medulla and determine voltage-gated characteristics of activation and inactivation of rapidly inactivating and persistent sodium channels in these neurons.


1989 ◽  
Vol 67 (4) ◽  
pp. 1364-1370 ◽  
Author(s):  
D. F. Speck

Neuronal recordings, microstimulation, and electrolytic and chemical lesions were used to examine the involvement of the Botzinger Complex (BotC) in the bilateral phrenic-to-phrenic inhibitory reflex. Experiments were conducted in decerebrate cats that were paralyzed, ventilated, thoracotomized, and vagotomized. Microelectrode recordings within the BotC region revealed that some neurons were activated by phrenic nerve stimulation (15 of 69 expiratory units, 9 of 67 inspiratory units, and 19 nonrespiratory-modulated units) at average latencies similar to the onset latency of the phrenic-to-phrenic inhibition. In addition, microstimulation within the BotC caused a short latency transient inhibition of phrenic motor activity. In 17 cats phrenic neurogram responses to threshold and supramaximal (15 mA) stimulation of phrenic nerve afferents were recorded before and after electrolytic BotC lesions. In 15 animals the inhibitory reflex was attenuated by bilateral lesions. Because lesion of either BotC neurons or axons of passage could account for this attenuation, in eight experiments the phrenic-to-phrenic inhibitory responses were recorded before and after bilateral injections of 5 microM kainic acid (30–150 nl) into the BotC. After chemical lesions, the inhibitory response to phrenic nerve stimulation remained; however, neuronal activity typical of the BotC could not be located. These results suggest that axons important in producing the phrenic-to-phrenic reflex pass through the region of the BotC, but that BotC neurons themselves are not necessary for this reflex.


eNeuro ◽  
2016 ◽  
Vol 3 (3) ◽  
pp. ENEURO.0081-16.2016 ◽  
Author(s):  
Hidehiko Koizumi ◽  
Bryan Mosher ◽  
Mohammad F. Tariq ◽  
Ruli Zhang ◽  
Naohiro Koshiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document