shore crabs
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 30)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Christopher J. Coates ◽  
Andrew F. Rowley

While most crab production for human consumption worldwide comes from capture fisheries, there is increasing production of selected species using aquaculture-based methods. This is both for the purpose of stock replacement and direct yield for human consumption. Disease has limited the ability to produce larval crabs in commercial hatcheries and this together with suitable feeds, are major hurdles in the sustainable development of cultivation methods. Juvenile and adult crabs are also subject to a range of diseases that can cause severe economic loss. Emerging pathogens/parasites are of major importance to crab aquaculture as they can cause high levels of mortality and are difficult to control. Diseases caused by viruses and bacteria receive considerable attention but the dinoflagellate parasites, Hematodinium spp., also warrant concern because of their wide host range and lack of control methods to limit their spread. This concise review examines the emerging diseases in several crabs that have been selected as candidates for aquaculture efforts including Chinese mitten crabs (Eriocheir sinensis), mud crabs (Scylla spp.), swimming crabs (Portunus spp.), blue crabs (Callinectes sapidus) and shore crabs (Carcinus maenas). The latter is also a prolific invasive species known to harbour diverse macro- and micro-parasites that can affect commercially important bivalves and crustaceans.


Author(s):  
Nadine Bleile ◽  
David W. Thieltges

Abstract Invasive predators can have wide-ranging effects on invaded ecosystems and identifying the prey spectra and preferences of invaders are important steps in assessing their potential impacts on native biota. In this study, we investigated prey preferences of two invasive crab species (Hemigrapsus sanguineus and Hemigrapsus takanoi) that recently invaded Europe's shores and compared them with preferences of native shore crabs (Carcinus maenas) of similar size. In laboratory experiments, all three crab species preferred animal over algal prey. In general, sessile mussels (Mytilus edulis) were preferred over motile amphipods (Gammarus locusta) by all three crab species but amphipod predation was lower in the invasive compared with the native crabs. For the two invasive crab species, this pattern was the same in treatments where prey was offered separately (no-choice treatments) or simultaneously (choice treatments), while for the native crabs, mussel preference disappeared in choice treatments. The general preference of mussels by all three crab species suggests that local invasions of crabs most likely lead to increased competition among crabs. In addition, given that local densities of invasive crabs are often much higher than those of native crabs, predation pressure on native mussels can be expected to strongly increase at invaded sites. In contrast, local predation pressure on amphipods may be less affected by the crab invasions. Further field studies are needed to establish the magnitude of competition and predation pressure exerted by the invaders under natural conditions.


2021 ◽  
Vol 51 (5) ◽  
Author(s):  
Annika Cornelius ◽  
Katerina Wagner ◽  
Christian Buschbaum

AbstractThe Asian brush-clawed shore crab Hemigrapsus takanoi was introduced to the northern Wadden Sea (southeastern North Sea) in 2009 and now represents one of the most abundant brachyuran crab species. Abundance studies revealed an increase of mean crab densities on mixed reefs of native blue mussels (Mytilus edulis) and Pacific oysters (Magallana gigas) from 18 individuals m−2 in 2011 to 216 individuals m−2 in 2020. Despite its current high densities only little is known about the feeding habits of H. takanoi, its effects on prey populations and on the associated community in the newly invaded habitat. We summarize results of individual field and laboratory experiments that were conducted to assess feeding habits and consumption effects caused by Asian brush-clawed shore crabs and, additionally, compare the feeding ecology of H. takanoi with the one of the native shore crab Carcinus maenas. Field experiments manipulating crab densities revealed that both crab species affected the recruitment success of blue mussels, Pacific oysters and Australian barnacles (Austrominius modestus) with highest number of recruits at crab exclusion. However, endobenthic polychaetes within the reefs were differently affected. Only the native C. maenas caused a significant reduction in polychaete densities, whereas the introduced H. takanoi had no effect. Additional comparative laboratory studies revealed that single C. maenas consume more juvenile blue mussels than Asian brush-clawed shore crabs of the same size class. When offering amphipods as a mobile prey species, we found the same pattern with higher consumption rates by C. maenas than by H. takanoi. For Asian but not for native shore crabs, we detected a sex-dependent feeding behavior with male H. takanoi preferring blue mussels, while females consumed more amphipods. Considering mean crab densities and feeding behavior, our results suggest that despite lower consumption rates of single crabs, Asian brush-clawed shore crabs can cause stronger impacts on prey organisms than the native C. maenas, because H. takanoi exceeds their densities manifold. A strong impact of the invader on prey populations is supported by low amphipod occurrence at sites where H. takanoi density is high in the study area. Thus, the introduced Asian brush-clawed shore crab is an additional consumer with significant effects on the associated community of mixed reefs of mussels and oysters in the Wadden Sea.


2021 ◽  
Author(s):  
Charlotte E Davies ◽  
Jessica E Thomas ◽  
Sophie H Malkin ◽  
Frederico M Batista ◽  
Andrew F Rowley ◽  
...  

Host, pathogen, and environment are determinants of the disease triangle, the latter being a key driver of disease outcomes and persistence within a community. The dinoflagellate genus Hematodinium is detrimental to crustaceans globally – considered to suppress the innate defences of hosts, making them more susceptible to co-infections. Evidence supporting immune-suppression is largely anecdotal and sourced from diffuse accounts of compromised decapods. We used a population of shore crabs (Carcinus maenas), where Hematodinium sp. is endemic, to determine the extent of collateral infections across two distinct environments (open water, semi-closed dock). Using a multi-resource approach (PCR, histology, haematology, population genetics, eDNA), we identified 162 Hematodinium- positive crabs and size/sex-matched these to 162 Hematodinium-free crabs out of 1,191 analysed. Crabs were interrogated for additional disease-causing agents; haplosporidians, microsporidians, mikrocytids, Vibrio spp., fungi, Sacculina, trematodes, and haemolymph bacterial loads. We found no significant differences in occurrence, severity or composition of collateral infections between Hematodinium-positive and Hematodinium-free crabs at either site, but crucially, we recorded site-restricted blends of pathogens. We found no gross signs of host cell immune reactivity toward Hematodinium in the presence or absence of other pathogens. We contend Hematodinium sp. is an immune-evader rather than immune-suppressor, which suggests an evolutionary drive toward latency in this environmentally plastic host.


2021 ◽  
Vol 288 (1945) ◽  
pp. 20203036
Author(s):  
Jessica Quinn ◽  
Sarah Lee ◽  
Duncan Greeley ◽  
Alyssa Gehman ◽  
Armand M. Kuris ◽  
...  

The abundances of free-living species have changed dramatically in recent decades, but little is known about change in the abundance of parasitic species. We investigated whether populations of several parasites have shifted over time in two shore crab hosts, Hemigrapsus oregonensis and Hemigrapsus nudus, by comparing the prevalence and abundance of three parasite taxa in a historical dataset (1969–1970) to contemporary parasite abundance (2018–2020) for hosts collected from 11 intertidal sites located from Oregon, USA, to British Columbia, Canada. Our data suggest that the abundance of the parasitic isopod Portunion conformis has varied around a stable mean for the past 50 years. No change over time was observed for larval acanthocephalans. However, larval microphallid trematodes increased in prevalence over time among H. oregonensis hosts, from a mean of 8.4–61.8% between the historical and contemporary time points. The substantial increase in the prevalence of larval microphallid trematodes could be owing to increased abundances of their bird final hosts, increased production of parasite infective stages by snail intermediate hosts or both. Our study highlights the variability among parasite species in their temporal trajectories of change.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Nicholas Strausfeld ◽  
Marcel E Sayre

Neural organization of mushroom bodies is largely consistent across insects, whereas the ancestral ground pattern diverges broadly across crustacean lineages resulting in successive loss of columns and the acquisition of domed centers retaining ancestral Hebbian-like networks and aminergic connections. We demonstrate here a major departure from this evolutionary trend in Brachyura, the most recent malacostracan lineage. In the shore crab Hemigrapsus nudus, instead of occupying the rostral surface of the lateral protocerebrum, mushroom body calyces are buried deep within it with their columns extending outwards to an expansive system of gyri on the brain’s surface. The organization amongst mushroom body neurons reaches extreme elaboration throughout its constituent neuropils. The calyces, columns, and especially the gyri show DC0 immunoreactivity, an indicator of extensive circuits involved in learning and memory.


2020 ◽  
Vol 656 ◽  
pp. 1-18
Author(s):  
JJ Beukema ◽  
R Dekker

Macrobenthic animals living in a tidal-flat area in the westernmost part of the Wadden Sea were monitored for 50 yr (1970-2019) using consistent methods. About 100 papers were published on this project. We review a number of results and conclusions on observed changes and their possible underlying causal processes. The most significant changes in population sizes and growth rates of several species could be attributed to climate warming (by about 2°C), along with increasing trends in species richness and total late-winter zoobenthic biomass. In the initial years, eutrophication (doubling of nutrients and chlorophyll concentrations) resulted in a doubling of zoobenthic biomass. The subsequent de-eutrophication after the mid-1980s was reflected only in the biomass values observed in late summer. A long-term trend in food supply for birds was not observed. Disturbances from fisheries were intermittent and modest. In several bivalve species, magnitudes of production and biomass were determined primarily by recruitment variation, which was mainly caused by spring abundance of epibenthic predators (shore crabs and shrimps). Their abundance increased with temperatures in the preceding winter. In contrast to this top-down regulation, bottom-up processes apparently played only a minor role in the determination of bivalve biomass. Rarely occurring extremely high bivalve numbers resulted in reduced rates of growth and production. We conclude that the uniquely long monitoring of the tidal-flat macrozoobenthos yielded data series which not only indicated several long-term trends, but also contributed to our insight in processes underlying the observed trends. Most of the observed trends were related to climate change and eutrophication followed by de-eutrophication.


Sign in / Sign up

Export Citation Format

Share Document