The distribution of Cdh20 mRNA demarcates somatotopic subregions and subpopulations of spiny projection neurons in the rat dorsolateral striatum

Author(s):  
Masanori Takahashi ◽  
Ryoji Fukabori ◽  
Hiroshi Kawasaki ◽  
Kazuto Kobayashi ◽  
Kiyoshi Kawakami
2019 ◽  
Author(s):  
Bradley M. Roberts ◽  
Natalie M. Doig ◽  
Katherine R. Brimblecombe ◽  
Emanuel F. Lopes ◽  
Ruth E. Siddorn ◽  
...  

SummaryStriatal dopamine (DA) is critical for action and learning. Recent data show DA release is under tonic inhibition by striatal GABA. Ambient striatal GABA tone on striatal projection neurons can be governed by plasma membrane GABA uptake transporters (GATs) on astrocytes. However, whether striatal GATs and astrocytes determine DA output are unknown. We reveal that DA release in mouse dorsolateral striatum, but not nucleus accumbens core, is governed by GAT-1 and GAT-3. These GATs are partly localized to astrocytes, and are enriched in dorsolateral striatum compared to accumbens core. In a mouse model of early parkinsonism, GATs were downregulated and tonic GABAergic inhibition of DA release augmented, with corresponding attenuation of GABA co-release from dopaminergic axons. These data define previously unappreciated and important roles for GATs and astrocytes in determining DA release in striatum, and reveal a maladaptive plasticity in early parkinsonism that impairs DA output in vulnerable striatal regions.HighlightsGABA transporters set the level of GABA inhibition of DA output in dorsal striatumAstrocytes facilitate DA release levels by limiting tonic GABA inhibitionTonic inhibition of DA release is augmented in a mouse model of early parkinsonismDA and GABA co-release are reduced in a mouse model of early parkinsonism


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Bradley M. Roberts ◽  
Natalie M. Doig ◽  
Katherine R. Brimblecombe ◽  
Emanuel F. Lopes ◽  
Ruth E. Siddorn ◽  
...  

Abstract Striatal dopamine (DA) is critical for action and learning. Recent data show that DA release is under tonic inhibition by striatal GABA. Ambient striatal GABA tone on striatal projection neurons can be determined by plasma membrane GABA uptake transporters (GATs) located on astrocytes and neurons. However, whether striatal GATs and astrocytes determine DA output are unknown. We reveal that DA release in mouse dorsolateral striatum, but not nucleus accumbens core, is governed by GAT-1 and GAT-3. These GATs are partly localized to astrocytes, and are enriched in dorsolateral striatum compared to accumbens core. In a mouse model of early parkinsonism, GATs are downregulated, tonic GABAergic inhibition of DA release augmented, and nigrostriatal GABA co-release attenuated. These data define previously unappreciated and important roles for GATs and astrocytes in supporting DA release in striatum, and reveal a maladaptive plasticity in early parkinsonism that impairs DA output in vulnerable striatal regions.


2016 ◽  
Vol 115 (3) ◽  
pp. 1487-1498 ◽  
Author(s):  
Kyle S. Smith ◽  
Ann M. Graybiel

Evaluating outcomes of behavior is a central function of the striatum. In circuits engaging the dorsomedial striatum, sensitivity to goal value is accentuated during learning, whereas outcome sensitivity is thought to be minimal in the dorsolateral striatum and its habit-related corticostriatal circuits. However, a distinct population of projection neurons in the dorsolateral striatum exhibits selective sensitivity to rewards. Here, we evaluated the outcome-related signaling in such neurons as rats performed an instructional T-maze task for two rewards. As the rats formed maze-running habits and then changed behavior after reward devaluation, we detected outcome-related spike activity in 116 units out of 1,479 recorded units. During initial training, nearly equal numbers of these units fired preferentially either after rewarded runs or after unrewarded runs, and the majority were responsive at only one of two reward locations. With overtraining, as habits formed, firing in nonrewarded trials almost disappeared, and reward-specific firing declined. Thus error-related signaling was lost, and reward signaling became generalized. Following reward devaluation, in an extinction test, postgoal activity was nearly undetectable, despite accurate running. Strikingly, when rewards were then returned, postgoal activity reappeared and recapitulated the original early response pattern, with nearly equal numbers responding to rewarded and unrewarded runs and to single rewards. These findings demonstrate that outcome evaluation in the dorsolateral striatum is highly plastic and tracks stages of behavioral exploration and exploitation. These signals could be a new target for understanding compulsive behaviors that involve changes to dorsal striatum function.


2020 ◽  
Author(s):  
Bruno Oliveira Ferreira de Souza ◽  
Éve‐Marie Frigon ◽  
Robert Tremblay‐Laliberté ◽  
Christian Casanova ◽  
Denis Boire

Author(s):  
Е.И. Захарова ◽  
З.И. Сторожева ◽  
А.Т. Прошин ◽  
М.Ю. Монаков ◽  
А.М. Дудченко

Цель - исследование холинергической синаптической организации функций обучения и памяти у крыс с разными когнитивными способностями. Методы. Крыс обучали на пространственной обстановочной модели в водном лабиринте Морриса. Через 2-3 сут. после окончания тренировок животных декапитировали, из неокортекса и гиппокампа с помощью центрифугирования выделяли субфракции синаптических мембран и синаптоплазмы легких и тяжелых синаптосом. В синаптических субфракциях определяли активность ключевого фермента холинергических нейронов холинацетилтрансферазы (ХАТ). Сравнивали результаты тестирования (время достижения скрытой платформы) и активность фермента у способных и неспособных к обучению крыс. Результаты. Были выявлены: 1) различия в холинергической организации исследованных функций в процессе обучения у способных и неспособных к обучению крыс, в том числе: положительные корреляции активности ХАТ в синапсах проекционных нейронов неокортекса у способных крыс со временем достижения платформы на промежуточных этапах обучения и в синапсах проекционных нейронов гиппокампа у неспособных крыс на позднем этапе обучения; разнонаправленные корреляции активности ХАТ в синапсах, предположительно, интернейронов гиппокампа (фракция тяжелых синаптосом) у способных и неспособных крыс на начальном и позднем этапах обучения; 2) индивидуальность холинергической организации функций на всех этапах обучения. Выводы. Полученные данные свидетельствуют в пользу представлений о специфике холинергической организации функций пространственного обстановочного обучения у крыс с выраженными и слабыми способностями к обучению, а также избирательной роли холинергических интернейронов гиппокампа на исходном этапе обучения и в консолидации памяти. In order to expand the knowledge about neuronal organization of the cognitive functions required for understanding plastic processes in the brain, we investigated the cholinergic synaptic organization of learning and memory functions in rats with different cognitive abilities. Methods. Rats were trained on a contextual situation model in the Morris water maze. At 2-3 days after the end of training, animals were decapitated, and subfractions of synaptic membranes and synaptoplasm of light and heavy synaptosomes were isolated from the cortex and the hippocampus by centrifugation. In synaptic subfractions, activity of the key enzyme of cholinergic neurons, choline acetyltransferase, was measured. We compared the test results (latent period to reach the hidden platform) and the enzyme activity in capable (lower quartile) and incapable of learning rats (upper quartile). Results. The following was found: 1) differences in the cholinergic organization of studied functions in capable and uncapable of learning rats during training, including: positive correlations of choline acetyltransferase activity in synapses of projection neurons in the cortex of capable rats with latency to reach the platform at intermediate stages of training and in the hippocampus ofincapable rats at late stages of training; multidirectional correlations of choline acetyltransferase activity in synapses of hippocampal, presumably, interneurons (heavy synaptosomes) in capable and incapable rats at early and late stages of training; 2) distinctness of the cholinergic organization of functions at all stages of training. Conclusions. The study demonstrated for the first time a specificity of the cholinergic organization of functions in spatial situational learning of rats with strong and poor learning abilities and a selective role of hippocampal cholinergic interneurons at the initial stage of learning and in memory consolidation.


Sign in / Sign up

Export Citation Format

Share Document