Radial organization of thalamic projections to the neocortex in the mouse

1980 ◽  
Vol 194 (2) ◽  
pp. 369-393 ◽  
Author(s):  
Douglas O. Frost ◽  
Verne S. Caviness
1984 ◽  
Vol 52 (5) ◽  
pp. 941-960 ◽  
Author(s):  
L. Tong ◽  
R. E. Kalil ◽  
P. D. Spear

Previous experiments have found that neurons in the cat's lateral suprasylvian (LS) visual area of cortex show functional compensation following removal of visual cortical areas 17, 18, and 19 on the day of birth. Correspondingly, an enhanced retino-thalamic pathway to LS cortex develops in these cats. The present experiments investigated the critical periods for these changes. Unilateral lesions of areas 17, 18, and 19 were made in cats ranging in age from 1 day postnatal to 26 wk. When the cats were adult, single-cell recordings were made from LS cortex ipsilateral to the lesion. In addition, transneuronal autoradiographic methods were used to trace the retino-thalamic projections to LS cortex in many of the same animals. Following lesions in 18- and 26-wk-old cats, there is a marked reduction in direction-selective LS cortex cells and an increase in cells that respond best to stationary flashing stimuli. These results are similar to those following visual cortex lesions in adult cats. In contrast, the percentages of cells with these properties are normal following lesions made from 1 day to 12 wk of age. Thus the critical period for development of direction selectivity and greater responses to moving than to stationary flashing stimuli in LS cortex following a visual cortex lesion ends between 12 and 18 wk of age. Following lesions in 26-wk-old cats, there is a decrease in the percentage of cells that respond to the ipsilateral eye, which is similar to results following visual cortex lesions in adult cats. However, ocular dominance is normal following lesions made from 1 day to 18 wk of age. Thus the critical period for development of responses to the ipsilateral eye following a lesion ends between 18 and 26 wk of age. Following visual cortex lesions in 2-, 4-, or 8-wk-old cats, about 30% of the LS cortex cells display orientation selectivity to elongated slits of light. In contrast, few or no cells display this property in normal adult cats, cats with lesions made on the day of birth, or cats with lesions made at 12 wk of age or later. Thus an anomalous property develops for many LS cells, and the critical period for this property begins later (between 1 day and 2 wk) and ends earlier (between 8 and 12 wk) than those for other properties.(ABSTRACT TRUNCATED AT 400 WORDS)


Development ◽  
1987 ◽  
Vol 99 (3) ◽  
pp. 393-410
Author(s):  
J.S. Taylor

This study concerns the retinotopic organization of the ganglion cell fibres in the visual system of the frog Xenopus laevis. HRP was used to trace the pathways taken by fibres from discrete retinal positions as they pass from the retina, along the optic nerve and into the chiasma. The ganglion cell fibres in the retina are arranged in fascicles which correspond with their circumferential positions of origin. Within the fascicles the fibres show little age-related layering and do not have a strict radial organization. As the fascicles of fibres pass into the optic nerve head there is some exchange of position resulting in some loss of the retinal circumferential organization. The poor radial organization of the fibres in the retinal fascicles persists as the fibres pass through the intraocular part of the nerve. At a position just behind the eye there is a major fibre reorganization in which fibres arising from cells of increasingly peripheral retinal locations are found to have passed into increasingly peripheral positions in the nerve. Thus, fibres from peripheral-most retina are located at the nerve perimeter, whilst fibres from central retina are located in the nerve core. It is at this point that the radial, chronotopic, ordering of the ganglion cell axons, found throughout the rest of the optic pathway, is established. This annular organization persists along the length of the nerve until a position just before the nerve enters the brain. Here, fibres from each annulus move to form layers as they pass into the optic chiasma. This change in the radial organization appears to be related to the pathway followed by all newly growing fibres, in the most superficial part of the optic tract, adjacent to the pia. Just behind the eye, where fibres become radially ordered, the circumferential organization of the projection is largely lost. Fibres from every circumferential retinal position, which are of similar radial position, are distributed within the same annulus of the nerve. At the nerve-chiasma junction where each annulus forms a single layer as it enters the optic tract, there is a further mixing of fibres from all circumferential positions. However, as the fibres pass through the chiasma some active pathway selection occurs, generating the circumferential organization of the fibres in the optic tract. Additional observations of the organization of fibres in the optic nerve of Rana pipiens confirm previous reports of a dual representation of fibres within the nerve. The difference in the organization of fibres in the optic nerve of Xenopus and Rana pipiens is discussed.


Neuron ◽  
2013 ◽  
Vol 77 (3) ◽  
pp. 472-484 ◽  
Author(s):  
Marie Deck ◽  
Ludmilla Lokmane ◽  
Sophie Chauvet ◽  
Caroline Mailhes ◽  
Maryama Keita ◽  
...  
Keyword(s):  

2015 ◽  
Vol 221 (3) ◽  
pp. 1573-1589 ◽  
Author(s):  
Michela Gamberini ◽  
Sophia Bakola ◽  
Lauretta Passarelli ◽  
Kathleen J. Burman ◽  
Marcello G. P. Rosa ◽  
...  
Keyword(s):  

Author(s):  
Archan Ganguly ◽  
Florian Wernert ◽  
Sébastien Phan ◽  
Daniela Boassa ◽  
Utpal Das ◽  
...  

SUMMARYClathrin has established roles in endocytosis, with clathrin-cages enclosing membrane infoldings, followed by rapid disassembly and reuse of monomers. However, in neurons, clathrin synthesized in cell-bodies is conveyed into axons and synapses via slow axonal transport; as shown by classic pulse-chase radiolabeling. What is the cargo-structure, and mechanisms underlying transport and presynaptic-targeting of clathrin? What is the precise organization at synapses? Combining live-imaging, mass-spectrometry (MS), Apex-labeled EM-tomography and super-resolution, we found that unlike dendrites where clathrin transiently assembles/disassembles as expected, axons contain stable ‘transport-packets’ that move intermittently with an anterograde bias; with actin/myosin-VI as putative tethers. Transport-packets are unrelated to endocytosis, and the overall kinetics generate a slow biased flow of axonal clathrin. Synapses have integer-numbers of clathrin-packets circumferentially abutting the synaptic-vesicle cluster, advocating a model where delivery of clathrin-packets by slow axonal transport generates a radial organization of clathrin at synapses. Our experiments reveal novel trafficking mechanisms, and an unexpected nanoscale organization of synaptic clathrin.


Sign in / Sign up

Export Citation Format

Share Document