Distribution and colocalization of choline acetyltransferase immunoreactivity and NADPH diaphorase reactivity in neurons within the medial septum and diagonal band of broca in the rat basal forebrain

1993 ◽  
Vol 335 (1) ◽  
pp. 1-15 ◽  
Author(s):  
P. D. Kitchener ◽  
J. Diamond
2002 ◽  
Vol 50 (7) ◽  
pp. 891-902 ◽  
Author(s):  
Riitta A. Miettinen ◽  
Giedrius Kalesnykas ◽  
Esa H. Koivisto

This study was undertaken to estimate the total number of cholinergic cells and the percentage of cholinergic cells that contain estrogen receptor-α (ERα) in the rat basal forebrain. Double immunostaining for choline acetyltransferase (ChAT) and ERα was carried out on 50-μm-thick free-floating sections. Because routine mounting method causes considerable flattening of the sections, we embedded immunostained sections in Durcupan, an epoxy resin known to cause virtually no shrinkage. When this procedure was used the section thickness was well preserved, individual cells could be clearly identified, and subcellular localization of ERα immunoreactivity was easy to verify. Cell counting in these sections revealed that the rat basal forebrain contains 26,390 ± 1097 (mean ± SEM) cholinergic neurons. This comprises 9674 ± 504 in the medial septum-vertical diagonal band of Broca, 9403 ± 484 in the horizontal diagonal band of Broca, and 7312 ± 281 in the nucleus basalis. In these nuclei, 60%, 46%, and 14% of the cholinergic neurons were colocalized with ERα, respectively. We believe that our results are an improvement on existing data because of the better distinction of individual neurons that the Durcupan embedding method brings.


2019 ◽  
Vol 5 (3) ◽  
pp. eaav1640 ◽  
Author(s):  
Ryan M. Cassidy ◽  
Yungang Lu ◽  
Madhavi Jere ◽  
Jin-Bin Tian ◽  
Yuanzhong Xu ◽  
...  

Animals must consider competing information before deciding to eat: internal signals indicating the desirability of food and external signals indicating the risk involved in eating within a particular environment. The behaviors driven by the former are manifestations of hunger, and the latter, anxiety. The connection between pathologic anxiety and reduced eating in conditions like typical depression and anorexia is well known. Conversely, anti-anxiety drugs such as benzodiazepines increase appetite. Here, we show that GABAergic neurons in the diagonal band of Broca (DBBGABA) are responsive to indications of risk and receive monosynaptic inhibitory input from lateral hypothalamus GABAergic neurons (LHGABA). Activation of this circuit reduces anxiety and causes indiscriminate feeding. We also found that diazepam rapidly reduces DBBGABA activity while inducing indiscriminate feeding. Our study reveals that the LHGABA→DBBGABA neurocircuit overrides anxiogenic environmental cues to allow feeding and that this pathway may underlie the link between eating and anxiety-related disorders.


2014 ◽  
Vol 35 (2) ◽  
pp. 175-184
Author(s):  
Ya-li Wang ◽  
Jian-gang Wang ◽  
Gao-xiang Ou-yang ◽  
Xiao-li Li ◽  
Zaineb Henderson ◽  
...  

1990 ◽  
Vol 38 (4) ◽  
pp. 563-571 ◽  
Author(s):  
G Palacios

Coronal vibratome sections of the rostral part of the medial septum (MS) and vertical limb of the diagonal band of Broca (VDB) nuclei were studied by an immunocytochemical technique using a monoclonal antibody against choline acetyltransferase (ChAT) and a double histochemical method for detection of acid phosphatase (AcPase) and nucleoside diphosphatase (NDPase) activity. The electron microscopic morphology of ChAT-immunoreactive and non-immunoreactive neurons was compared with similar neurons showing both AcPase and NDPase activity. ChAT-labeled and non-labeled neurons were well differentiated by the organization of the endomembrane system and especially by the structure of the rough endoplasmic reticulum (RER) and associated lamellar bodies. These results support the theory that the peculiar ultrastructure of the lamellar bodies in each neuron is related to the pattern of organization of the endomembrane system and its function. The significance of the lamellar bodies is discussed, and the data of the present work, together with findings described by other investigators. These data suggest that these bodies are predominant in efferent projection neurons in the basal forebrain nuclei.


2011 ◽  
Vol 106 (5) ◽  
pp. 2749-2763 ◽  
Author(s):  
Hao Zhang ◽  
Shih-Chieh Lin ◽  
Miguel A. L. Nicolelis

The medial septum-vertical limb of the diagonal band of Broca (MSvDB) is important for normal hippocampal functions and theta oscillations. Although many previous studies have focused on understanding how MSVDB neurons fire rhythmic bursts to pace hippocampal theta oscillations, a significant portion of MSVDB neurons are slow-firing and thus do not pace theta oscillations. The function of these MSVDB neurons, especially their role in modulating hippocampal activity, remains unknown. We recorded MSVDB neuronal ensembles in behaving rats, and identified a distinct physiologically homogeneous subpopulation of slow-firing neurons (overall firing <4 Hz) that shared three features: 1) much higher firing rate during rapid eye movement sleep than during slow-wave (SW) sleep; 2) temporary activation associated with transient arousals during SW sleep; 3) brief responses (latency 15∼30 ms) to auditory stimuli. Analysis of the fine temporal relationship of their spiking and theta oscillations showed that unlike the theta-pacing neurons, the firing of these “pro-arousal” neurons follows theta oscillations. However, their activity precedes short-term increases in hippocampal oscillation power in the theta and gamma range lasting for a few seconds. Together, these results suggest that these pro-arousal slow-firing MSvDB neurons may function collectively to promote hippocampal activation.


Sign in / Sign up

Export Citation Format

Share Document