diagonal band of broca
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 10)

H-INDEX

31
(FIVE YEARS 1)

Author(s):  
Tuanjie Huang ◽  
Fangxia Guan ◽  
Julio Licinio ◽  
Ma-Li Wong ◽  
Yunlei Yang

AbstractThe neuropeptide oxytocin (OXT) is well recognized for eliciting anxiolytic effects and promoting social reward. However, emerging evidence shows that OXT increases aversive events. These seemingly inconsistent results may be attributable to the broad OXT receptor (OXTr) expression in the central nervous system. This study selectively activated septal neurons expressing OXTr using chemogenetics. We found that chemogenetic activation of septal OXTr neurons induced anxiety- but not depressive-like behavior. In addition, septal OXTr neurons projected dense fibers to the horizontal diagonal band of Broca (HDB), and selective stimulation of those HDB projections also elicited anxiety-like behaviors. We also found that septal OXTr neurons express the vesicular GABA transporter (vGAT) protein and optogenetic stimulation of septal OXTr projections to the HDB inactivated HDB neurons. Our data collectively reveal that septal OXTr neurons increase anxiety by projecting inhibitory GABAergic inputs to the HDB.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jonathan A. Zegarra-Valdivia ◽  
Irene Chaves-Coira ◽  
Maria Estrella Fernandez de Sevilla ◽  
Laura Martinez-Rachadell ◽  
Julio Esparza ◽  
...  

It is known that aging is frequently accompanied by a decline in cognition. Furthermore, aging is associated with lower serum IGF-I levels that may contribute to this deterioration. We studied the effect of IGF-I in neurons of the horizontal diagonal band of Broca (HDB) of young (≤6 months old) and old (≥20-month-old) mice to determine if changes in the response of these neurons to IGF-I occur along with aging. Local injection of IGF-I in the HDB nucleus increased their neuronal activity and induced fast oscillatory activity in the electrocorticogram (ECoG). Furthermore, IGF-I facilitated tactile responses in the primary somatosensory cortex elicited by air-puffs delivered in the whiskers. These excitatory effects decreased in old mice. Immunohistochemistry showed that cholinergic HDB neurons express IGF-I receptors and that IGF-I injection increased the expression of c-fos in young, but not in old animals. IGF-I increased the activity of optogenetically-identified cholinergic neurons in young animals, suggesting that most of the IGF-I-induced excitatory effects were mediated by activation of these neurons. Effects of aging were partially ameliorated by chronic IGF-I treatment in old mice. The present findings suggest that reduced IGF-I activity in old animals participates in age-associated changes in cortical activity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Angel Nuñez ◽  
Washington Buño

This review focuses on the neuronal and circuit mechanisms involved in the generation of the theta (θ) rhythm and of its participation in behavior. Data have accumulated indicating that θ arises from interactions between medial septum-diagonal band of Broca (MS-DbB) and intra-hippocampal circuits. The intrinsic properties of MS-DbB and hippocampal neurons have also been shown to play a key role in θ generation. A growing number of studies suggest that θ may represent a timing mechanism to temporally organize movement sequences, memory encoding, or planned trajectories for spatial navigation. To accomplish those functions, θ and gamma (γ) oscillations interact during the awake state and REM sleep, which are considered to be critical for learning and memory processes. Further, we discuss that the loss of this interaction is at the base of various neurophatological conditions.


2021 ◽  
Vol 15 ◽  
Author(s):  
Linghong Chen ◽  
Yuting Ke ◽  
Hong Ma ◽  
Lei Gao ◽  
Yiying Zhou ◽  
...  

The basal forebrain cholinergic system is involved in cognitive processes, but the role of the basal forebrain cholinergic system in depression is unknown. We investigated whether a lesion of cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) produces depressive-like behavior and whether fluoxetine or ketamine inhibits such depressive-like behaviors. Here, in rats, we used 192 IgG-saporin to eliminate the cholinergic neurons of the HDB and evaluated depressive-like behaviors using a preference test for sucrose solution and the forced swimming test. Fourteen days after the injection of 192 IgG-saporin into the HDB, the rats exhibited a significantly fewer number of choline acetyltransferase positive cell density in HDB, accompanied with neuronal loss in the entire hippocampus. Meanwhile, these rats significantly reduced preference for sucrose solution, increased immobility time in the forced swimming test, reduced locomotor activity, decreased context dependent memory in fear conditioning and the time spent in the open arms of the plus-maze. A single dose of ketamine (10 mg/kg) increased the sucrose solution consumption, reduced the immobility time in the forced swim test (FST), and increased locomotor activity compared to vehicle-treated rats. Moreover, in rats that were continuously treated with fluoxetine (10 mg/kg/day for 11 days), the sucrose solution consumption increased, the immobility time in the FST decreased, and locomotor activity increased compared to vehicle-treated rats. The present results demonstrate that a lesion of HDB cholinergic neurons results in depressive-like and anxiety-like behaviors and that antidepressants such as fluoxetine or ketamine, can reverse these depressive-like behaviors but not anxiety-like behaviors, and suggest that a lesion of HDB cholinergic neurons and followed hippocampus damage may be involved in the pathogenesis of depression.


2021 ◽  
Author(s):  
Monika Müller ◽  
Inna Schwarz ◽  
Irina Pavlova ◽  
Jens Schweihoff ◽  
Fabrizio Musacchio ◽  
...  

Author(s):  
Rodrigo A Carrasco ◽  
Jaswant Singh ◽  
Marcelo H Ratto ◽  
Gregg P Adams

Abstract The objective of the study was to characterize the anatomical framework and sites of action of the nerve growth factor (NGF)-mediated ovulation-inducing system of llamas. The expression patterns of NGF and its receptors in the hypothalamus of llamas (n = 5) were examined using single and double immunohistochemistry/immunofluorescence. We also compare the expression pattern of the P75 receptor in the hypothalamus of llama and a spontaneous ovulator species (sheep, n = 5). Both NGF receptors (TrkA and P75) were highly expressed in the medial septum and diagonal band of Broca, and populations of TrkA cells were observed in the periventricular and dorsal hypothalamus. Unexpectedly, we found NGF immunoreactive cell bodies with widespread distribution in the hypothalamus but not in areas endowed with NGF receptors. The organum vasculosum of the lamina terminalis (OVLT) and the median eminence displayed immunoreactivity for P75. Double immunofluorescence using vimentin, a marker of tanycytes, confirmed that tanycytes were immunoreactive to P75 in the median eminence and in the OVLT. Additionally, tanycytes were in close association with GnRH and kisspeptin in the arcuate nucleus and median eminence of llamas. The choroid plexus of llamas contained TrkA and NGF immunoreactivity but no P75 immunoreactivity. Results of the present study demonstrate sites of action of NGF in the llama hypothalamus, providing support for the hypothesis of a central effect of NGF in the ovulation-inducing mechanism in llamas.


2020 ◽  
Author(s):  
Hajime Suyama ◽  
Veronica Egger ◽  
Michael Lukas

AbstractSocial discrimination in rats requires activation of the intrinsic bulbar vasopressin system, but it is unclear how this system comes into operation. Here we show that a higher number of bulbar vasopressin cells (VPC) is activated by stimulation with a conspecific compared to rat urine, indicating that VPC activation depends on more than olfactory cues during social interaction. In-vitro slice electrophysiology combined with pharmacology and immunohistochemistry then demonstrated that centrifugal cholinergic inputs from the diagonal band of Broca can enable olfactory nerve-evoked action potentials in VPCs via muscarinic neuromodulation. Finally, such muscarinic activation of the vasopressin system is essential for vasopressin-dependent social discrimination, since recognition of a known rat could be blocked by a muscarinic antagonist and rescued by additional application of vasopressin. For the first time, we demonstrated that top-down cholinergic modulation of bulbar VPC activity in a social context is crucial for individual social discrimination in rats.


2020 ◽  
Author(s):  
Inna Schwarz ◽  
Monika Müller ◽  
Irina Pavlova ◽  
Jens Schweihoff ◽  
Fabrizio Musacchio ◽  
...  

AbstractSensory perception is modulated in a top-down fashion by higher brain regions to regulate the strength of its own input resulting in the adaptation of behavioral responses. In olfactory perception, the horizontal diagonal band of broca (HDB), embedded in the basal forebrain modulates olfactory information processing by recruiting olfactory bulb (OB) interneuron activity to shape excitatory OB output. Currently, little is known about how specific HDB to OB top down signaling affects complex olfactory-mediated behaviors. Here we show that the olfactory bulb is strongly and differentially innervated by HDB projections. HDB-silencing via tetanus toxin lead to reduced odor-evoked Ca2+-responses in glomeruli of the main OB, underscoring the HDB’s role in odor response modulation. Furthermore, selective, light-mediated silencing of only HDB to OB afferents completely prevented olfactory-mediated habituation and discrimination behaviors. Notably, also social habituation and discrimination behaviors were affected. Here we provide evidence for a novel tri-synaptic paraventricular nucleus (PVN)-HDB-OB axis responsible for modulating these types of behavior. Thus, HDB to OB projections constitute a central top-down pathway for olfactory-mediated habituation and discrimination.


2019 ◽  
Vol 5 (3) ◽  
pp. eaav1640 ◽  
Author(s):  
Ryan M. Cassidy ◽  
Yungang Lu ◽  
Madhavi Jere ◽  
Jin-Bin Tian ◽  
Yuanzhong Xu ◽  
...  

Animals must consider competing information before deciding to eat: internal signals indicating the desirability of food and external signals indicating the risk involved in eating within a particular environment. The behaviors driven by the former are manifestations of hunger, and the latter, anxiety. The connection between pathologic anxiety and reduced eating in conditions like typical depression and anorexia is well known. Conversely, anti-anxiety drugs such as benzodiazepines increase appetite. Here, we show that GABAergic neurons in the diagonal band of Broca (DBBGABA) are responsive to indications of risk and receive monosynaptic inhibitory input from lateral hypothalamus GABAergic neurons (LHGABA). Activation of this circuit reduces anxiety and causes indiscriminate feeding. We also found that diazepam rapidly reduces DBBGABA activity while inducing indiscriminate feeding. Our study reveals that the LHGABA→DBBGABA neurocircuit overrides anxiogenic environmental cues to allow feeding and that this pathway may underlie the link between eating and anxiety-related disorders.


Sign in / Sign up

Export Citation Format

Share Document