Coupled finite difference and boundary element methods for fluid flow through a vessel with multibranches in tumours

2012 ◽  
Vol 29 (3) ◽  
pp. 309-331 ◽  
Author(s):  
Qiang Sun ◽  
Guo Xiong Wu
1991 ◽  
Vol 23 (1-3) ◽  
pp. 517-524
Author(s):  
M. Kanoh ◽  
T. Kuroki ◽  
K. Fujino ◽  
T. Ueda

The purpose of the paper is to apply two methods to groundwater pollution in porous media. The methods are the weighted finite difference method and the boundary element method, which were proposed or developed by Kanoh et al. (1986,1988) for advective diffusion problems. Numerical modeling of groundwater pollution is also investigated in this paper. By subdividing the domain into subdomains, the nonlinearity is localized to a small region. Computational time for groundwater pollution problems can be saved by the boundary element method; accurate numerical results can be obtained by the weighted finite difference method. The computational solutions to the problem of seawater intrusion into coastal aquifers are compared with experimental results.


2019 ◽  
Vol 24 (1) ◽  
pp. 5-36
Author(s):  
T. Ahmed ◽  
Md. M. Alam ◽  
M. Ferdows ◽  
E.E. Tzirtzilakis

Abstract Numerical studies have been performed to examine the chemically reacting ionized fluid flow through a vertical plate with induced magnetic field. This study is performed for the cooling problem. To obtain the nondimensional non-similar momentum, the induced magnetic field, energy and concentration equations, usual nondimensional variables have been used. The numerical solutions for the velocity fields, induced magnetic fields, temperature distribution as well as concentration distribution are obtained for associated parameters using the explicit finite difference method. The local and average shear stresses, current densities, Nusselt number as well as the Sherwood number are also investigated. The obtained results are discussed with the help of graphs to observe effects of various parameters entering into the problem. Also the stability conditions of the explicit finite difference method are analyzed. Finally, a qualitative comparison of the present results with previously published results has been made.


2016 ◽  
Vol 19 (5) ◽  
pp. 391-404 ◽  
Author(s):  
B. M. Shankar ◽  
I. S. Shivakumara ◽  
Chiu-On Ng

Sign in / Sign up

Export Citation Format

Share Document