A Sharp Inequality on the Exponentiation of Functions on the Sphere

Author(s):  
Sun‐Yung Alice Chang ◽  
Changfeng Gui
Keyword(s):  
1985 ◽  
Vol 107 (5) ◽  
pp. 1015 ◽  
Author(s):  
S.-Y. A. Chang ◽  
D. E. Marshall

2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Jiaolong Chen ◽  
David Kalaj

Assume that $p\in [1,\infty ]$ and $u=P_{h}[\phi ]$, where $\phi \in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^n)$ and $u(0) = 0$. Then we obtain the sharp inequality $\lvert u(x) \rvert \le G_p(\lvert x \rvert )\lVert \phi \rVert_{L^{p}}$ for some smooth function $G_p$ vanishing at $0$. Moreover, we obtain an explicit form of the sharp constant $C_p$ in the inequality $\lVert Du(0)\rVert \le C_p\lVert \phi \rVert \le C_p\lVert \phi \rVert_{L^{p}}$. These two results generalize and extend some known results from the harmonic mapping theory (D. Kalaj, Complex Anal. Oper. Theory 12 (2018), 545–554, Theorem 2.1) and the hyperbolic harmonic theory (B. Burgeth, Manuscripta Math. 77 (1992), 283–291, Theorem 1).


2005 ◽  
Vol 72 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Bang-Yen Chen

In an earlier article we obtain a sharp inequality for an arbitrary isometric immersion from a Riemannian manifold admitting a Riemannian submersion with totally geodesic fibres into a unit sphere. In this article we investigate the immersions which satisfy the equality case of the inequality. As a by-product, we discover a new characterisation of Cartan hypersurface in S4.


2018 ◽  
Vol 97 (3) ◽  
pp. 435-445 ◽  
Author(s):  
BOGUMIŁA KOWALCZYK ◽  
ADAM LECKO ◽  
YOUNG JAE SIM

We prove the sharp inequality $|H_{3,1}(f)|\leq 4/135$ for convex functions, that is, for analytic functions $f$ with $a_{n}:=f^{(n)}(0)/n!,~n\in \mathbb{N}$, such that $$\begin{eqnarray}Re\bigg\{1+\frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}\bigg\}>0\quad \text{for}~z\in \mathbb{D}:=\{z\in \mathbb{C}:|z|<1\},\end{eqnarray}$$ where $H_{3,1}(f)$ is the third Hankel determinant $$\begin{eqnarray}H_{3,1}(f):=\left|\begin{array}{@{}ccc@{}}a_{1} & a_{2} & a_{3}\\ a_{2} & a_{3} & a_{4}\\ a_{3} & a_{4} & a_{5}\end{array}\right|.\end{eqnarray}$$


2003 ◽  
Vol 2003 (27) ◽  
pp. 1731-1738 ◽  
Author(s):  
Dragoş Cioroboiu

Chen (1993) established a sharp inequality for the sectional curvature of a submanifold in Riemannian space forms in terms of the scalar curvature and squared mean curvature. The notion of a semislant submanifold of a Sasakian manifold was introduced by J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez (1999). In the present paper, we establish Chen inequalities for semislant submanifolds in Sasakian space forms by using subspaces orthogonal to the Reeb vector fieldξ.


2012 ◽  
Vol 25 (3) ◽  
pp. 648-653 ◽  
Author(s):  
Jean Louet ◽  
Filippo Santambrogio

2018 ◽  
Vol 6 (1) ◽  
pp. 369-376 ◽  
Author(s):  
Wolfgang Trutschnig ◽  
Thomas Mroz

AbstractWe derive a new (lower) inequality between Kendall’s τ and Spearman’s ρ for two-dimensional Extreme-Value Copulas, show that this inequality is sharp in each point and conclude that the comonotonic and the product copula are the only Extreme-Value Copulas for which the well-known lower Hutchinson-Lai inequality is sharp.


2015 ◽  
Vol 58 (4) ◽  
pp. 713-722
Author(s):  
Simon Brendle ◽  
Otis Chodosh

AbstractMotivated by Almgren’s work on the isoperimetric inequality, we prove a sharp inequality relating the length and maximum curvature of a closed curve in a complete, simply connected manifold of sectional curvature at most −1. Moreover, if equality holds, then the norm of the geodesic curvature is constant and the torsion vanishes. The proof involves an application of the maximum principle to a function defined on pairs of points.


Sign in / Sign up

Export Citation Format

Share Document