A restricted proxy re-encryption with keyword search for fine-grained data access control in cloud storage

2016 ◽  
Vol 28 (10) ◽  
pp. 2858-2876 ◽  
Author(s):  
Zhenhua Chen ◽  
Shundong Li ◽  
Qiong Huang ◽  
Yilei Wang ◽  
Sufang Zhou
Author(s):  
Jayesh Sahebrav Patil ◽  
Prashant Mininath Mane

From the time in memorial, Information Security has remained a primary concern and today when most of the sensitive data is stored on Cloud with client organization having lesser control over the stored data, the fundamental way to fix this issue is to encrypt such data. So, a secure user imposed data access control system must be given, before the users outsource any data to the cloud for storage. Attribute Based Encryption (ABE) system is one such asymmetric key based cryptosystem that has received much attention that provides fine-grained access control to data stored on the cloud. In this paper, we propose a more proficient and richer type of Attribute Based Encryption technique (RSABE) that not only considers the Outsourced ABE construction but also address the issue of revocation in case of change of attributes of the group user or organization; once a user is removed from the group, the keys are updated and these new keys are distributed among the existing users also our system supports the Keyword search over encrypted data in the mobile cloud storage. In multi keyword search; data owners and users can generate the keywords index and search trapdoor, respectively, without relying on always online trusted authority. Experimental results prove that the performance of the proposed system is greater than existing system in terms of security, time consumption and memory utilization & data availability.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 265 ◽  
Author(s):  
Hui Yin ◽  
Yinqiao Xiong ◽  
Jixin Zhang ◽  
Lu Ou ◽  
Shaolin Liao ◽  
...  

Attribute based encryption is a promising technique that achieves flexible and fine-grained data access control over encrypted data, which is very suitable for a secure data sharing environment such as the currently popular cloud computing. However, traditional attribute based encryption fails to provide an efficient keyword based search on encrypted data, which somewhat weakens the power of this encryption technique, as search is usually the most important approach to quickly obtain data of interest from large-scale dataset. To address this problem, attribute based encryption with keyword search (ABKS) is designed to achieve fine-grained data access control and keyword based search, simultaneously, by an ingenious combination of attribute based encryption and searchable encryption. Recently, several ABKS schemes have been constructed in secure cloud storage system for data access control and keyword search. Nonetheless, each of these schemes has some defects such as impractical computation overhead and insufficient access policy expression. To overcome these limitations, in this paper, we design a Key-Policy Searchable Attribute-based Encryption Scheme (KPSABES) based on the full-blown key-policy attribute-based encryption proposed by Vipul Goyal et al. By novel design, our scheme not only inherits all advantages of that scheme but also achieves efficient and secure keyword search over encrypted data. We provide the detailed performance analyses and security proofs for our scheme. Extensive experiments demonstrated that our proposed scheme is superior in many aspects to the similar work.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Kaiqing Huang ◽  
Xueli Wang ◽  
Zhiqiang Lin

With the assistance of edge computing which reduces the heavy burden of the cloud center server by using the network edge servers, the Internet of Things (IoTs) architectures enable low latency for real-time devices and applications. However, there still exist security challenges on data access control for the IoT. Multiauthority attribute-based encryption (MA-ABE) is a promising technique to achieve access control over encrypted data in cross-domain applications. Based on the characteristics and technical requirements of the IoT, we propose an efficient fine-grained revocable large universe multiauthority access control scheme. In the proposed scheme, the most expensive encryption operations have been executed in the user’s initialization phase by adding a reusable ciphertext pool besides splitting the encryption algorithm to online encryption and offline encryption. Massive decryption operations are outsourced to the near-edge servers for reducing the computation overhead of decryption. An efficient revocation mechanism is designed to change users’ access privileges dynamically. Moreover, the scheme supports ciphertext verification. Only valid ciphertext can be stored and transmitted, which saves system resources. With the help of the chameleon hash function, the proposed scheme is proven CCA2-secure under the q-DPBDHE2 assumption. The performance analysis results indicate that the proposed scheme is efficient and suitable in edge computing for the IoT.


Author(s):  
Jianting Ning ◽  
Zhenfu Cao ◽  
Xiaolei Dong ◽  
Kaitai Liang ◽  
Lifei Wei ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2109
Author(s):  
Liming Fang ◽  
Minghui Li ◽  
Lu Zhou ◽  
Hanyi Zhang ◽  
Chunpeng Ge

A smart watch is a kind of emerging wearable device in the Internet of Things. The security and privacy problems are the main obstacles that hinder the wide deployment of smart watches. Existing security mechanisms do not achieve a balance between the privacy-preserving and data access control. In this paper, we propose a fine-grained privacy-preserving access control architecture for smart watches (FPAS). In FPAS, we leverage the identity-based authentication scheme to protect the devices from malicious connection and policy-based access control for data privacy preservation. The core policy of FPAS is two-fold: (1) utilizing a homomorphic and re-encrypted scheme to ensure that the ciphertext information can be correctly calculated; (2) dividing the data requester by different attributes to avoid unauthorized access. We present a concrete scheme based on the above prototype and analyze the security of the FPAS. The performance and evaluation demonstrate that the FPAS scheme is efficient, practical, and extensible.


Sign in / Sign up

Export Citation Format

Share Document