Cloud‐assisted Parkinson disease identification system for remote patient monitoring and diagnosis in the smart healthcare applications

Author(s):  
Karthikeyan Harimoorthy ◽  
Menakadevi Thangavelu
2019 ◽  
Vol 10 (4) ◽  
pp. 66-85
Author(s):  
Vivek Tiwari ◽  
Basant Tiwari

In the last decade, significant advancements in telecommunications and informatics have seen which incredibly boost mobile communications, wireless networks, and pervasive computing. It enables healthcare applications to increase human livelihood. Furthermore, it seems feasible to continuous observation of patients and elderly individuals for their wellbeing. Such pervasive arrangements enable medical experts to analyse current patient status, minimise reaction time, increase livelihood, scalability, and availability. There is found plenty of remote patient monitoring model in literature, and most of them are designed with limited scope. Most of them are lacking to give an overall unified, complete model which talk about all state-of-the-art functionalities. In this regard, remote patient monitoring systems (RPMS's) play important roles through wearable devices to monitor the patient's physiological condition. RPMS also enables the capture of related videos, images, and frames. RPMS do not mean to enable only capturing various sorts of patient-related information, but it also must facilitate analytics, transformation, security, alerts, accessibility, etc. In this view, RPMS must ensure some broad issues like, wearability, adaptability, interoperability, integration, security, and network efficiency. This article proposes a data-driven multi-layer architecture for pervasively remote patient monitoring that incorporates these issues. The system has been classified into five fundamental layers: the data acquisition layer, the data pre-processing layer, the network and data transfer layer, the data management layer and the data accessing layer. It enables patient care at real-time using the network infrastructure efficiently. A detailed discussion on various security issues have been carried out. Moreover, standard deviation-based data reduction and a machine-learning-based data access policy is also proposed.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 776
Author(s):  
Xiaohui Tao ◽  
Thanveer Basha Shaik ◽  
Niall Higgins ◽  
Raj Gururajan ◽  
Xujuan Zhou

Remote Patient Monitoring (RPM) has gained great popularity with an aim to measure vital signs and gain patient related information in clinics. RPM can be achieved with noninvasive digital technology without hindering a patient’s daily activities and can enhance the efficiency of healthcare delivery in acute clinical settings. In this study, an RPM system was built using radio frequency identification (RFID) technology for early detection of suicidal behaviour in a hospital-based mental health facility. A range of machine learning models such as Linear Regression, Decision Tree, Random Forest, and XGBoost were investigated to help determine the optimum fixed positions of RFID reader–antennas in a simulated hospital ward. Empirical experiments showed that Decision Tree had the best performance compared to Random Forest and XGBoost models. An Ensemble Learning model was also developed, took advantage of these machine learning models based on their individual performance. The research set a path to analyse dynamic moving RFID tags and builds an RPM system to help retrieve patient vital signs such as heart rate, pulse rate, respiration rate and subtle motions to make this research state-of-the-art in terms of managing acute suicidal and self-harm behaviour in a mental health ward.


2021 ◽  
Vol 46 (5) ◽  
pp. 100800
Author(s):  
Abdulaziz Joury ◽  
Tamunoinemi Bob-Manuel ◽  
Alexandra Sanchez ◽  
Fnu Srinithya ◽  
Amber Sleem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document