network efficiency
Recently Published Documents


TOTAL DOCUMENTS

510
(FIVE YEARS 218)

H-INDEX

29
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Qiang Lai ◽  
Hong-hao Zhang

Abstract The identification of key nodes plays an important role in improving the robustness of the transportation network. For different types of transportation networks, the effect of the same identification method may be different. It is of practical significance to study the key nodes identification methods corresponding to various types of transportation networks. Based on the knowledge of complex networks, the metro networks and the bus networks are selected as the objects, and the key nodes are identified by the node degree identification method, the neighbor node degree identification method, the weighted k-shell degree neighborhood identification method (KSD), the degree k-shell identification method (DKS), and the degree k-shell neighborhood identification method (DKSN). Take the network efficiency and the largest connected subgraph as the effective indicators. The results show that the KSD identification method that comprehensively considers the elements has the best recognition effect and has certain practical significance.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yanbing Hou ◽  
Lingyu Zhang ◽  
Qianqian Wei ◽  
Ruwei Ou ◽  
Jing Yang ◽  
...  

Background: Idiopathic blepharospasm (BSP) is a common adult-onset focal dystonia. Neuroimaging technology can be used to visualize functional and microstructural changes of the whole brain.Method: We used resting-state functional MRI (rs-fMRI) and graph theoretical analysis to explore the functional connectome in patients with BSP. Altogether 20 patients with BSP and 20 age- and gender-matched healthy controls (HCs) were included in the study. Measures of network topology were calculated, such as small-world parameters (clustering coefficient [Cp], the shortest path length [Lp]), network efficiency parameters (global efficiency [Eglob], local efficiency [Eloc]), and the nodal parameter (nodal efficiency [Enod]). In addition, the least absolute shrinkage and selection operator (LASSO) regression was adopted to determine the most critical imaging features, and the classification model using critical imaging features was constructed.Results: Compared with HCs, the BSP group showed significantly decreased Eloc. Imaging features of nodal centrality (Enod) were entered into the LASSO method, and the classification model was constructed with nine imaging nodes. The area under the curve (AUC) was 0.995 (95% CI: 0.973–1.000), and the sensitivity and specificity were 95% and 100%, respectively. Specifically, four imaging nodes within the sensorimotor network (SMN), cerebellum, and default mode network (DMN) held the prominent information. Compared with HCs, the BSP group showed significantly increased Enod in the postcentral region within the SMN, decreased Enod in the precentral region within the SMN, increased Enod in the medial cerebellum, and increased Enod in the precuneus within the DMN.Conclusion: The network model in BSP showed reduced local connectivity. Baseline connectomic measures derived from rs-fMRI data may be capable of identifying patients with BSP, and regions from the SMN, cerebellum, and DMN may provide key insights into the underlying pathophysiology of BSP.


Author(s):  
Zhenshuang Wang ◽  
Yanxin Zhou ◽  
Ning Zhao ◽  
Tao Wang ◽  
Zhong Sheng Zhang

To explore the spatial network structure characteristics and driving effects of carbon emission intensity in China's construction industry, the investigation combined the modified gravity model and social network analysis method to deeply analyze the spatially associated network structure characteristics and driving effects of carbon emission intensity in China's construction industry, based on the measurement of carbon emission data of China's construction industry from 2006 to 2017. The results show that the regional differences of carbon emission of construction industry are significant, and the carbon emission intensity of construction industry show a fluctuation trend. The overall network of carbon emission intensity shows an obvious “core-edge” state, the hierarchical network structure is gradually broken. Economically developed provinces generally play a leading role in the network, and play an intermediary role to guide other provinces to develop together with them. Among the network blocks, most of the blocks play the role of “brokers”. The block with the leading economic development has a strong influence on the other blocks. The increase of network density, the decrease of network hierarchy and network efficiency will reduce the construction carbon emission intensity.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Cuixia Gao ◽  
Simin Tao ◽  
Kehu Li ◽  
Yuyang He

The structure formed by fossil energy trade among countries can be divided into multiple subcommodity networks. However, the difference of coupling mode and transmission mechanism between layers of the multirelationship network will affect the measurement of node importance. In this paper, a framework of multisource information fusion by considering data uncertainty and the classical network centrality measures is build. Then, the evidential centrality (EVC) indicator is proposed, by integrating Dempster–Shafer evidence theory and network theory, to empirically identify influential nodes of fossil energy trade along the Belt and Road Initiative. The initial result of the heterogeneity characteristics of the constructed network drives us to explore the core node issue further. The main detected evidential nodes include Russia, Kazakhstan, Czechia, Slovakia, Egypt, Romania, China, Saudi Arabia, and Singapore, which also have higher impact on network efficiency. In addition, cluster analysis discovered that resource endowment is an essential factor influencing country’s position, followed by geographical distance, economic level, and economic growth potential. Therefore, the above aspects should be considered when ensuring national trade security. At last, the rationality and comprehensiveness of EVC are verified by comparing with some benchmark centralities.


Author(s):  
Sundresan Perumal ◽  
Valliappan Raman ◽  
Ganthan Narayana Samy ◽  
Bharanidharan Shanmugam ◽  
Karthiggaibalan Kisenasamy ◽  
...  

2021 ◽  
pp. 1-65
Author(s):  
Dale Zhou ◽  
Christopher W. Lynn ◽  
Zaixu Cui ◽  
Rastko Ciric ◽  
Graham L. Baum ◽  
...  

Abstract In systems neuroscience, most models posit that brain regions communicate information under constraints of efficiency. Yet, evidence for efficient communication in structural brain networks remains sparse. The principle of efficient coding proposes that the brain transmits maximal information in a metabolically economical or compressed form to improve future behavior. To determine how structural connectivity supports efficient coding, we develop a theory specifying minimum rates of message transmission between brain regions to achieve an expected fidelity, and we test five predictions from the theory based on random walk communication dynamics. In doing so, we introduce the metric of compression efficiency, which quantifies the trade-off between lossy compression and transmission fidelity in structural networks. In a large sample of youth (n = 1,042; age 8–23 years), we analyze structural networks derived from diffusion weighted imaging and metabolic expenditure operationalized using cerebral blood flow. We show that structural networks strike compression efficiency trade-offs consistent with theoretical predictions. We find that compression efficiency prioritizes fidelity with development, heightens when metabolic resources and myelination guide communication, explains advantages of hierarchical organization, links higher input fidelity to disproportionate areal expansion, and shows that hubs integrate information by lossy compression. Lastly, compression efficiency is predictive of behavior—beyond the conventional network efficiency metric—for cognitive domains including executive function, memory, complex reasoning, and social cognition. Our findings elucidate how macroscale connectivity supports efficient coding, and serve to foreground communication processes that utilize random walk dynamics constrained by network connectivity.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2436
Author(s):  
Zhongyi Lin ◽  
Yang Cao ◽  
Huasheng Liu ◽  
Jin Li ◽  
Shuzhi Zhao

The urban public transportation system is an important part of urban transportation, and the rationality of public transportation routes layout plays a vital role in the transportation of the city. Improving the efficiency of public transportation can have a positive impact on the operation of the public transportation system. This paper uses complex network theory and the symmetry of the up and down bus routes and stations to establish an urban public transit network model and calculates the probability of passengers choosing different routes in the public transit network according to passenger travel impedance. Based on passenger travel impedance, travel path probability and passenger travel demand, the links are weighed, and the network efficiency calculation method is improved. Finally, the public transit network optimization model was established with network efficiency as the objective function and solved by the ant colony algorithm. In order to verify the effectiveness of the model and the solution method, this paper selects areas in Nanguan District of Changchun City for example analysis. The result shows that the efficiency of the optimized network is 8.5% higher than that of the original network, which proves the feasibility of the optimized model and solution method.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tao Liang ◽  
Fan Wu ◽  
Yongxing Sun ◽  
Baoguo Wang

Background: The oscillations and interactions between different brain areas during recovery of consciousness (ROC) from anesthesia in humans are poorly understood. Reliable stereoelectroencephalography (SEEG) signatures for transitions between unconsciousness and consciousness under anesthesia have not yet been fully identified.Objective: This study was designed to observe the change of electrophysiological activity during ROC and construct a ROC network based on SEEG data to describe the network property of cortical and deep areas during ROC from propofol-induced anesthetic epileptic patients.Methods: We analyzed SEEG data recorded from sixteen right-handed epileptic patients during ROC from propofol anesthesia from March 1, 2019, to December 31, 2019. Power spectrum density (PSD), correlation, and coherence were used to describe different brain areas' electrophysiological activity. The clustering coefficient, characteristic path length, modularity, network efficiency, degrees, and betweenness centrality were used to describe the network changes during ROC from propofol anesthesia. Statistical analysis was performed using MATLAB 2016b. The power spectral data from different contacts were analyzed using a one-way analysis of variance (ANOVA) test with Tukey's post-hoc correction. One sample t-test was used for the analysis of network property. Kolmogorov-Smirnov test was used to judge data distribution. Non-normal distribution was analyzed using the signed rank-sum test.Result: From the data of these 16 patients, 10 cortical, and 22 deep positions were observed. In this network, we observed that bilateral occipital areas are essential parts that have strong links with many regions. The recovery process is different in the bilateral cerebral cortex. Stage B (propofol 3.0-2.5 μg/ml) and E (propofol 1.5 μg/ml-ROC) play important roles during ROC exhibiting significant changes. The clustering coefficient gradually decreases with the recovery from anesthesia, and the changes mainly come from the cortical region. The characteristic path length and network efficiency do not change significantly during the recovery from anesthesia, and the changes of network modularity and clustering coefficient are similar. Deep areas tend to form functional modules. The left occipital lobe, the left temporal lobe, bilateral amygdala are essential nodes in the network. Some specific cortical regions (i.e., left angular gyrus, right angular gyrus, right temporal lobe, left temporal lobe, and right angular gyrus) and deep regions (i.e., right amygdala, left cingulate gyrus, right insular lobe, right amygdala) have more significant constraints on other regions.Conclusion: We verified that the bilateral cortex's recovery process is the opposite, which is not found in the deep regions. Significant PSD changes were observed in many areas at the beginning of stop infusion and near recovery. Our study found that during the ROC process, the modularity and clustering coefficient of the deep area network is significantly improved. However, the changes of the bilateral cerebral cortex were different. Power spectrum analysis shows that low-frequency EEG in anesthesia recovery accounts for a large proportion. The changes of the bilateral brain in the process of anesthesia recovery are different. The clustering coefficient gradually decreased with the recovery from anesthesia, and the changes mainly came from the cortical region. The characteristic path length and network efficiency do not change significantly during the recovery from anesthesia, and the changes of network modularity and clustering coefficient were similar. During ROC, the left occipital lobe, the left temporal lobe, bilateral amygdala were essential nodes in the network. The findings of the current study suggest SEEG as an effective tool for providing direct evidence of the anesthesia recovery mechanism.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260295
Author(s):  
Dongha Lee ◽  
Elizabeth Quattrocki Knight ◽  
Hyunjoo Song ◽  
Saebyul Lee ◽  
Chongwon Pae ◽  
...  

The heterogeneous presentation of inattentive and hyperactive-impulsive core symptoms in attention deficit hyperactivity disorder (ADHD) warrants further investigation into brain network connectivity as a basis for subtype divisions in this prevalent disorder. With diffusion and resting-state functional magnetic resonance imaging data from the Healthy Brain Network database, we analyzed both structural and functional network efficiency and structure-functional network (SC-FC) coupling at the default mode (DMN), executive control (ECN), and salience (SAN) intrinsic networks in 201 children diagnosed with the inattentive subtype (ADHD-I), the combined subtype (ADHD-C), and typically developing children (TDC) to characterize ADHD symptoms relative to TDC and to test differences between ADHD subtypes. Relative to TDC, children with ADHD had lower structural connectivity and network efficiency in the DMN, without significant group differences in functional networks. Children with ADHD-C had higher SC-FC coupling, a finding consistent with diminished cognitive flexibility, for all subnetworks compared to TDC. The ADHD-C group also demonstrated increased SC-FC coupling in the DMN compared to the ADHD-I group. The correlation between SC-FC coupling and hyperactivity scores was negative in the ADHD-I, but not in the ADHD-C group. The current study suggests that ADHD-C and ADHD-I may differ with respect to their underlying neuronal connectivity and that the added dimensionality of hyperactivity may not explain this distinction.


2021 ◽  
pp. 4121-4147
Author(s):  
Ruwaida M. Yas ◽  
Sokaina Hashim

     The rapid evolution of wireless networking technologies opens the door to the evolution of the Wireless Sensor Networks (WSNs) and their applications in different fields. The WSN consists of small energy sensor nodes used in a harsh environment. The energy needed to communicate between the sensors networks can be identified as one of the major challenges. It is essential to avoid massive loss, or loss of packets, as well as rapid energy depletion and grid injustice, which lead to lower node efficiency and higher packet delivery delays. For this purpose, it was very important to track the usage of energy by nodes in order to improve general network efficiency by the use of intelligent methods to reduce the energy used to extend the life of the WSN and take successful routing decisions. For these reasons, designing an energy-efficient system that utilizes intelligent approaches is considered as the most powerful way to prolong the lifetime of the WSN. The proposed system is divided into four phases (sensor deployment phase, clustering phase, intra-cluster phase, and inter-cluster phase). Each of these phases uses a different intelligent algorithm with some enhancements. The performance of the proposed system was analyzed and evaluations were elaborated with well-known existing routing protocols. To assess the proficiency of the proposed system and evaluate the endurance of the network, efficiency parameters such as network lifetime, energy consumption, and packet delivery to the Sink (Base station) were exploited. The experimental outcomes justify that the proposed system surpasses the existing mechanisms by 50%.


Sign in / Sign up

Export Citation Format

Share Document