Citation entity recognition method using multi‐feature semantic fusion based on deep learning

Author(s):  
Jie Gao ◽  
Zuping Zhang ◽  
Ping Cao ◽  
Wei Huang ◽  
Fangfang Li

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 226324-226336
Author(s):  
Shuguang Ning ◽  
Yigang He ◽  
Lifen Yuan ◽  
Yuan Huang ◽  
Shudong Wang ◽  
...  


2021 ◽  
Vol 54 (1) ◽  
pp. 1-39
Author(s):  
Zara Nasar ◽  
Syed Waqar Jaffry ◽  
Muhammad Kamran Malik

With the advent of Web 2.0, there exist many online platforms that result in massive textual-data production. With ever-increasing textual data at hand, it is of immense importance to extract information nuggets from this data. One approach towards effective harnessing of this unstructured textual data could be its transformation into structured text. Hence, this study aims to present an overview of approaches that can be applied to extract key insights from textual data in a structured way. For this, Named Entity Recognition and Relation Extraction are being majorly addressed in this review study. The former deals with identification of named entities, and the latter deals with problem of extracting relation between set of entities. This study covers early approaches as well as the developments made up till now using machine learning models. Survey findings conclude that deep-learning-based hybrid and joint models are currently governing the state-of-the-art. It is also observed that annotated benchmark datasets for various textual-data generators such as Twitter and other social forums are not available. This scarcity of dataset has resulted into relatively less progress in these domains. Additionally, the majority of the state-of-the-art techniques are offline and computationally expensive. Last, with increasing focus on deep-learning frameworks, there is need to understand and explain the under-going processes in deep architectures.





Author(s):  
Canyi Du ◽  
Rui Zhong ◽  
Yishen Zhuo ◽  
Xinyu Zhang ◽  
Feifei Yu ◽  
...  

Abstract Traditional engine fault diagnosis methods usually need to extract the features manually before classifying them by the pattern recognition method, which makes it difficult to solve the end-to-end fault diagnosis problem. In recent years, deep learning has been applied in different fields, bringing considerable convenience to technological change, and its application in the automotive field also has many applications, such as image recognition, language processing, and assisted driving. In this paper, a one-dimensional convolutional neural network (1D-CNN) in deep learning is used to process vibration signals to achieve fault diagnosis and classification. By collecting the vibration signal data of different engine working conditions, the collected data are organized into several sets of data in a working cycle, which are divided into a training sample set and a test sample set. Then, a one-dimensional convolutional neural network model is built in Python to allow the feature filter (convolution kernel) to learn the data from the training set and these convolution checks process the input data of the test set. Convolution and pooling extract features to output to a new space, which is characterized by learning features directly from the original vibration signals and completing fault diagnosis. The experimental results show that the pattern recognition method based on a one-dimensional convolutional neural network can be effectively applied to engine fault diagnosis and has higher diagnostic accuracy than traditional methods.



Sign in / Sign up

Export Citation Format

Share Document