Named Entity Recognition and Relation Extraction

2021 ◽  
Vol 54 (1) ◽  
pp. 1-39
Author(s):  
Zara Nasar ◽  
Syed Waqar Jaffry ◽  
Muhammad Kamran Malik

With the advent of Web 2.0, there exist many online platforms that result in massive textual-data production. With ever-increasing textual data at hand, it is of immense importance to extract information nuggets from this data. One approach towards effective harnessing of this unstructured textual data could be its transformation into structured text. Hence, this study aims to present an overview of approaches that can be applied to extract key insights from textual data in a structured way. For this, Named Entity Recognition and Relation Extraction are being majorly addressed in this review study. The former deals with identification of named entities, and the latter deals with problem of extracting relation between set of entities. This study covers early approaches as well as the developments made up till now using machine learning models. Survey findings conclude that deep-learning-based hybrid and joint models are currently governing the state-of-the-art. It is also observed that annotated benchmark datasets for various textual-data generators such as Twitter and other social forums are not available. This scarcity of dataset has resulted into relatively less progress in these domains. Additionally, the majority of the state-of-the-art techniques are offline and computationally expensive. Last, with increasing focus on deep-learning frameworks, there is need to understand and explain the under-going processes in deep architectures.

2021 ◽  
Vol 22 (S1) ◽  
Author(s):  
Ying Xiong ◽  
Shuai Chen ◽  
Buzhou Tang ◽  
Qingcai Chen ◽  
Xiaolong Wang ◽  
...  

Abstract Background Biomedical named entity recognition (NER) is a fundamental task of biomedical text mining that finds the boundaries of entity mentions in biomedical text and determines their entity type. To accelerate the development of biomedical NER techniques in Spanish, the PharmaCoNER organizers launched a competition to recognize pharmacological substances, compounds, and proteins. Biomedical NER is usually recognized as a sequence labeling task, and almost all state-of-the-art sequence labeling methods ignore the meaning of different entity types. In this paper, we investigate some methods to introduce the meaning of entity types in deep learning methods for biomedical NER and apply them to the PharmaCoNER 2019 challenge. The meaning of each entity type is represented by its definition information. Material and method We investigate how to use entity definition information in the following two methods: (1) SQuad-style machine reading comprehension (MRC) methods that treat entity definition information as query and biomedical text as context and predict answer spans as entities. (2) Span-level one-pass (SOne) methods that predict entity spans of one type by one type and introduce entity type meaning, which is represented by entity definition information. All models are trained and tested on the PharmaCoNER 2019 corpus, and their performance is evaluated by strict micro-average precision, recall, and F1-score. Results Entity definition information brings improvements to both SQuad-style MRC and SOne methods by about 0.003 in micro-averaged F1-score. The SQuad-style MRC model using entity definition information as query achieves the best performance with a micro-averaged precision of 0.9225, a recall of 0.9050, and an F1-score of 0.9137, respectively. It outperforms the best model of the PharmaCoNER 2019 challenge by 0.0032 in F1-score. Compared with the state-of-the-art model without using manually-crafted features, our model obtains a 1% improvement in F1-score, which is significant. These results indicate that entity definition information is useful for deep learning methods on biomedical NER. Conclusion Our entity definition information enhanced models achieve the state-of-the-art micro-average F1 score of 0.9137, which implies that entity definition information has a positive impact on biomedical NER detection. In the future, we will explore more entity definition information from knowledge graph.


2021 ◽  
pp. 1-12
Author(s):  
Yingwen Fu ◽  
Nankai Lin ◽  
Xiaotian Lin ◽  
Shengyi Jiang

Named entity recognition (NER) is fundamental to natural language processing (NLP). Most state-of-the-art researches on NER are based on pre-trained language models (PLMs) or classic neural models. However, these researches are mainly oriented to high-resource languages such as English. While for Indonesian, related resources (both in dataset and technology) are not yet well-developed. Besides, affix is an important word composition for Indonesian language, indicating the essentiality of character and token features for token-wise Indonesian NLP tasks. However, features extracted by currently top-performance models are insufficient. Aiming at Indonesian NER task, in this paper, we build an Indonesian NER dataset (IDNER) comprising over 50 thousand sentences (over 670 thousand tokens) to alleviate the shortage of labeled resources in Indonesian. Furthermore, we construct a hierarchical structured-attention-based model (HSA) for Indonesian NER to extract sequence features from different perspectives. Specifically, we use an enhanced convolutional structure as well as an enhanced attention structure to extract deeper features from characters and tokens. Experimental results show that HSA establishes competitive performance on IDNER and three benchmark datasets.


2020 ◽  
Vol 34 (05) ◽  
pp. 8164-8171
Author(s):  
Bing Li ◽  
Shifeng Liu ◽  
Yifang Sun ◽  
Wei Wang ◽  
Xiang Zhao

Recently, there has been an increasing interest in identifying named entities with nested structures. Existing models only make independent typing decisions on the entire entity span while ignoring strong modification relations between sub-entity types. In this paper, we present a novel Recursively Binary Modification model for nested named entity recognition. Our model utilizes the modification relations among sub-entities types to infer the head component on top of a Bayesian framework and uses entity head as a strong evidence to determine the type of the entity span. The process is recursive, allowing lower-level entities to help better model those on the outer-level. To the best of our knowledge, our work is the first effort that uses modification relation in nested NER task. Extensive experiments on four benchmark datasets demonstrate that our model outperforms state-of-the-art models in nested NER tasks, and delivers competitive results with state-of-the-art models in flat NER task, without relying on any extra annotations or NLP tools.


Author(s):  
Victor Sanh ◽  
Thomas Wolf ◽  
Sebastian Ruder

Much effort has been devoted to evaluate whether multi-task learning can be leveraged to learn rich representations that can be used in various Natural Language Processing (NLP) down-stream applications. However, there is still a lack of understanding of the settings in which multi-task learning has a significant effect. In this work, we introduce a hierarchical model trained in a multi-task learning setup on a set of carefully selected semantic tasks. The model is trained in a hierarchical fashion to introduce an inductive bias by supervising a set of low level tasks at the bottom layers of the model and more complex tasks at the top layers of the model. This model achieves state-of-the-art results on a number of tasks, namely Named Entity Recognition, Entity Mention Detection and Relation Extraction without hand-engineered features or external NLP tools like syntactic parsers. The hierarchical training supervision induces a set of shared semantic representations at lower layers of the model. We show that as we move from the bottom to the top layers of the model, the hidden states of the layers tend to represent more complex semantic information.


2021 ◽  
Author(s):  
Pan Liu ◽  
Yanming Guo ◽  
Fenglei Wang ◽  
Guohui Li

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Marco Humbel ◽  
Julianne Nyhan ◽  
Andreas Vlachidis ◽  
Kim Sloan ◽  
Alexandra Ortolja-Baird

PurposeBy mapping-out the capabilities, challenges and limitations of named-entity recognition (NER), this article aims to synthesise the state of the art of NER in the context of the early modern research field and to inform discussions about the kind of resources, methods and directions that may be pursued to enrich the application of the technique going forward.Design/methodology/approachThrough an extensive literature review, this article maps out the current capabilities, challenges and limitations of NER and establishes the state of the art of the technique in the context of the early modern, digitally augmented research field. It also presents a new case study of NER research undertaken by Enlightenment Architectures: Sir Hans Sloane's Catalogues of his Collections (2016–2021), a Leverhulme funded research project and collaboration between the British Museum and University College London, with contributing expertise from the British Library and the Natural History Museum.FindingsCurrently, it is not possible to benchmark the capabilities of NER as applied to documents of the early modern period. The authors also draw attention to the situated nature of authority files, and current conceptualisations of NER, leading them to the conclusion that more robust reporting and critical analysis of NER approaches and findings is required.Research limitations/implicationsThis article examines NER as applied to early modern textual sources, which are mostly studied by Humanists. As addressed in this article, detailed reporting of NER processes and outcomes is not necessarily valued by the disciplines of the Humanities, with the result that it can be difficult to locate relevant data and metrics in project outputs. The authors have tried to mitigate this by contacting projects discussed in this paper directly, to further verify the details they report here.Practical implicationsThe authors suggest that a forum is needed where tools are evaluated according to community standards. Within the wider NER community, the MUC and ConLL corpora are used for such experimental set-ups and are accompanied by a conference series, and may be seen as a useful model for this. The ultimate nature of such a forum must be discussed with the whole research community of the early modern domain.Social implicationsNER is an algorithmic intervention that transforms data according to certain rules-, patterns- or training data and ultimately affects how the authors interpret the results. The creation, use and promotion of algorithmic technologies like NER is not a neutral process, and neither is their output A more critical understanding of the role and impact of NER on early modern documents and research and focalization of some of the data- and human-centric aspects of NER routines that are currently overlooked are called for in this paper.Originality/valueThis article presents a state of the art snapshot of NER, its applications and potential, in the context of early modern research. It also seeks to inform discussions about the kinds of resources, methods and directions that may be pursued to enrich the application of NER going forward. It draws attention to the situated nature of authority files, and current conceptualisations of NER, and concludes that more robust reporting of NER approaches and findings are urgently required. The Appendix sets out a comprehensive summary of digital tools and resources surveyed in this article.


Author(s):  
Ismail El Bazi ◽  
Nabil Laachfoubi

Most of the Arabic Named Entity Recognition (NER) systems depend massively on external resources and handmade feature engineering to achieve state-of-the-art results. To overcome such limitations, we proposed, in this paper, to use deep learning approach to tackle the Arabic NER task. We introduced a neural network architecture based on bidirectional Long Short-Term Memory (LSTM) and Conditional Random Fields (CRF) and experimented with various commonly used hyperparameters to assess their effect on the overall performance of our system. Our model gets two sources of information about words as input: pre-trained word embeddings and character-based representations and eliminated the need for any task-specific knowledge or feature engineering. We obtained state-of-the-art result on the standard ANERcorp corpus with an F1 score of 90.6%.


2021 ◽  
Author(s):  
Christoph Brandl ◽  
Jens Albrecht ◽  
Renato Budinich

The task of relation extraction aims at classifying the semantic relations between entities in a text. When coupled with named-entity recognition these can be used as the building blocks for an information extraction procedure that results in the construction of a Knowledge Graph. While many NLP libraries support named-entity recognition, there is no off-the-shelf solution for relation extraction. In this paper, we evaluate and compare several state-of-the-art approaches on a subset of the FewRel data set as well as a manually annotated corpus. The custom corpus contains six relations from the area of market research and is available for public use. Our approach provides guidance for the selection of models and training data for relation extraction in realworld projects.


2021 ◽  
Vol 22 (S1) ◽  
Author(s):  
Cong Sun ◽  
Zhihao Yang ◽  
Lei Wang ◽  
Yin Zhang ◽  
Hongfei Lin ◽  
...  

Abstract Background The recognition of pharmacological substances, compounds and proteins is essential for biomedical relation extraction, knowledge graph construction, drug discovery, as well as medical question answering. Although considerable efforts have been made to recognize biomedical entities in English texts, to date, only few limited attempts were made to recognize them from biomedical texts in other languages. PharmaCoNER is a named entity recognition challenge to recognize pharmacological entities from Spanish texts. Because there are currently abundant resources in the field of natural language processing, how to leverage these resources to the PharmaCoNER challenge is a meaningful study. Methods Inspired by the success of deep learning with language models, we compare and explore various representative BERT models to promote the development of the PharmaCoNER task. Results The experimental results show that deep learning with language models can effectively improve model performance on the PharmaCoNER dataset. Our method achieves state-of-the-art performance on the PharmaCoNER dataset, with a max F1-score of 92.01%. Conclusion For the BERT models on the PharmaCoNER dataset, biomedical domain knowledge has a greater impact on model performance than the native language (i.e., Spanish). The BERT models can obtain competitive performance by using WordPiece to alleviate the out of vocabulary limitation. The performance on the BERT model can be further improved by constructing a specific vocabulary based on domain knowledge. Moreover, the character case also has a certain impact on model performance.


Sign in / Sign up

Export Citation Format

Share Document