scholarly journals Crop Yield, Nitrous Oxide Emissions following Swine Manure Application

CSA News ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 7-8
Author(s):  
Kaine Korzekwa
ael ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 190024 ◽  
Author(s):  
Weiquan Luo ◽  
Peter L. O'Brien ◽  
Jerry L. Hatfield

2021 ◽  
Vol 10 (2) ◽  
pp. e23910212427
Author(s):  
Vilmar Muller Júnior ◽  
Jucinei José Comin ◽  
Guilherme Wilbert Ferreira ◽  
Jorge Manuel Rodrigues Tavares ◽  
Rafael da Rosa Couto ◽  
...  

Nitrous oxide (N2O) is one of the main gases that contributes to the greenhouse effect. With a Global Warming Potential (GWP) 265 times greater than that of carbon dioxide (CO2), over a 100-year horizon, N2O also has the potential for the depreciation of the ozone layer. The activities related to agriculture and livestock are responsible for approximately 60% of the global anthropogenic emissions of this gas to the atmosphere. In Brazil, the sector corresponds to 37% of total emissions. The objectives of this review article were: (i) To verify which are the main processes involved in N2O emissions in soils fertilized with swine manure; (ii) What are the direct emissions on these soils under different management systems, and; (iii) What are the possible strategies for controlling and mitigating N2O emissions. Therefore, an exploratory and qualitative research of articles was carried out using the following keywords: óxido nitroso’, ‘nitrous oxide’, ‘N2O’, ‘nitrogênio’, ‘nitrogen’, ‘suínos, ‘pig, ‘swine’, ‘dejetos’, ‘manure’ and ‘slurry’. Effects of pig diet, manure treatment systems, presence of heavy metals in the soil and moisture content of manure on N2O emissions were verified. Therefore, we recommend integrated studies of the quantitative and qualitative impacts of the levels and sources of nitrogen in the animals' diets on N2O emissions after the application of these wastes to the soil. We also recommend studies related to the effects of copper and zinc contents added to the soil via swine manure on enzymes that catalyze the biotic denitrification process in the soil.


Author(s):  
Vilmar Müller Júnior ◽  
Leoncio de Paula Koucher ◽  
Monique Souza ◽  
Andria Paula Lima ◽  
Claudinei Kurtz ◽  
...  

2008 ◽  
Vol 88 (2) ◽  
pp. 241-249 ◽  
Author(s):  
Elizabeth Pattey ◽  
Lynda G Blackburn ◽  
Ian B. Strachan ◽  
Ray Desjardins ◽  
Dave Dow

Nitrous oxide emissions are highly episodic and to accurately quantify them annually, continuous measurements are required. A tower-based micrometeorological measuring system was used on a commercial cattle farm near Cô teau-du-Lac, (QC, Canada) during 2003 and 2004 to quantify N2O emissions associated with the production of edible peas. It was equipped with an ultrasonic anemometer and a fast-response closed-path tunable diode laser. Continuous measurements of N2O fluxes were made during the spring thaw following corn cultivation in summer 2002, then during an edible pea growing season, followed by cattle manure application, cover crop planting and through until after the next spring ploughing. The cumulative N2O emissions of 0.7 kg N2O-N ha-1 during the initial snowmelt period following corn harvest were lower than expected. Sustained and small N2O emissions totalling 1.7 kg N2O-N ha-1 were observed during the growing season of the pea crop. Solid cattle manure applied after the pea harvest generated the largest N2O emissions (1.9 kg N2O-N ha-1 over 10 d) observed during the entire sampling period. N2O emissions associated with the cover crop in the fall were mostly influenced by manure application and totalled 0.8 kg N2O-N ha-1. For the subsequent spring thaw period, N2O emissions were 0.8 kg N2O-N ha-1. This represents approximately 15% of the annual emissions for the edible pea-cover crop system, which totalled 5.6 kg N2O-N ha-1 over the measuring periods. There was little difference in spring thaw N2O emissions between the two growing seasons of corn and edible pea-cover crop. Key words: Nitrous oxide emissions, legumes, snowmelt, dairy manure, tunable diode laser, flux tower


2015 ◽  
Vol 103 (2) ◽  
pp. 217-228 ◽  
Author(s):  
X. J. Hao ◽  
T. Q. Zhang ◽  
C. S. Tan ◽  
T. Welacky ◽  
Y. T. Wang ◽  
...  

2008 ◽  
Vol 88 (4) ◽  
pp. 571-584 ◽  
Author(s):  
E. Smith ◽  
R. Gordon ◽  
C. Bourque ◽  
A. Campbell

Surface-applied swine manure has the potential to generate ammonia (NH3), nitrous oxide (N2O) and odour. Field research was conducted in Prince Edward Island to measure the simultaneous emissions of NH3, N2O and odour following the surface-application of swine manure. Manure was applied to a grain stubble field consisting of a sandy loam soil low in pH (5.6–5.9). The effect of manure type (liquid and solid), application rate [conventional/typical rate (1 ×): 30 000-36 000 L ha-1, double (2 ×): 60 000-72 000 L ha-1 and five times (5 ×): 180 000 L ha-1] and rainfall (8–200 mm) before and after liquid manure application were examined. There was no relationship between odour emissions and manure type, application rate and rainfall before and after spreading, due to high variability. Liquid manure (dry matter (DM = 45 g kg-1) reduced NH3 emissions by 32% compared with solid (DM = 350 g kg-1). Increasing application rates enhanced NH3 emissions; increasing the rate by 2 × and 5 × the typical rate increased losses by 62 and 78%, respectively. Applying manure prior to rainfall reduced NH3 emissions by 37%, compared with application after a rainfall. Ammonia and odour emissions were similarly correlated to atmospheric conditions with increased emissions at higher air and soil temperature, net radiation, vapour pressure deficit and windspeed. Nitrous oxide emissions were low in magnitude and showed no correlation to climatic conditions, suggesting that management strategies to reduce both odour and NH3 did not enhance N2O emissions when applied to a moderately acidic soil with low levels of soil nitrate (< 5 mg N kg-1). Our results indicate that for conditions similar to those in this study, there is no trade-off between NH3 and N2O production and more attention should be placed on controlling and reducing odour and NH3 emissions. Key words: Ammonia, nitrous oxide, odour, swine manure, management strategies


2013 ◽  
Vol 49 (8) ◽  
pp. 1123-1129 ◽  
Author(s):  
Christopher J. Graham ◽  
Harold M. van Es ◽  
Jeffrey J. Melkonian

2017 ◽  
Author(s):  
Carol Adair ◽  
Heather Darby ◽  
Tyler Goeschel ◽  
Lindsay Barbieri ◽  
Alissa White

A research team at UVM, led by Dr. Carol Adair and Dr. Heather Darby, is evaluating the benefits and drawbacks of four different tillage approaches (conventional, strip, vertical, and no till) and two different methods of manure application (broadcast and injection). The goal is to determine the practices best suited for reducing greenhouse gas emission, improving carbon storage and limiting nitrogen losses. The team measures carbon dioxide and nitrous oxide emissions from the treatments every two weeks or more frequently after events (large rainfall, manure application) using a measuring device called photoacoustic multigas monitor.


Sign in / Sign up

Export Citation Format

Share Document