Management strategies to simultaneously reduce ammonia, nitrous oxide and odour emissions from surface-applied swine manure

2008 ◽  
Vol 88 (4) ◽  
pp. 571-584 ◽  
Author(s):  
E. Smith ◽  
R. Gordon ◽  
C. Bourque ◽  
A. Campbell

Surface-applied swine manure has the potential to generate ammonia (NH3), nitrous oxide (N2O) and odour. Field research was conducted in Prince Edward Island to measure the simultaneous emissions of NH3, N2O and odour following the surface-application of swine manure. Manure was applied to a grain stubble field consisting of a sandy loam soil low in pH (5.6–5.9). The effect of manure type (liquid and solid), application rate [conventional/typical rate (1 ×): 30 000-36 000 L ha-1, double (2 ×): 60 000-72 000 L ha-1 and five times (5 ×): 180 000 L ha-1] and rainfall (8–200 mm) before and after liquid manure application were examined. There was no relationship between odour emissions and manure type, application rate and rainfall before and after spreading, due to high variability. Liquid manure (dry matter (DM = 45 g kg-1) reduced NH3 emissions by 32% compared with solid (DM = 350 g kg-1). Increasing application rates enhanced NH3 emissions; increasing the rate by 2 × and 5 × the typical rate increased losses by 62 and 78%, respectively. Applying manure prior to rainfall reduced NH3 emissions by 37%, compared with application after a rainfall. Ammonia and odour emissions were similarly correlated to atmospheric conditions with increased emissions at higher air and soil temperature, net radiation, vapour pressure deficit and windspeed. Nitrous oxide emissions were low in magnitude and showed no correlation to climatic conditions, suggesting that management strategies to reduce both odour and NH3 did not enhance N2O emissions when applied to a moderately acidic soil with low levels of soil nitrate (< 5 mg N kg-1). Our results indicate that for conditions similar to those in this study, there is no trade-off between NH3 and N2O production and more attention should be placed on controlling and reducing odour and NH3 emissions. Key words: Ammonia, nitrous oxide, odour, swine manure, management strategies

ael ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 190024 ◽  
Author(s):  
Weiquan Luo ◽  
Peter L. O'Brien ◽  
Jerry L. Hatfield

2009 ◽  
Vol 73 (3) ◽  
pp. 760-768 ◽  
Author(s):  
M.N. Miller ◽  
B.J. Zebarth ◽  
C.E. Dandie ◽  
D.L. Burton ◽  
C. Goyer ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. e23910212427
Author(s):  
Vilmar Muller Júnior ◽  
Jucinei José Comin ◽  
Guilherme Wilbert Ferreira ◽  
Jorge Manuel Rodrigues Tavares ◽  
Rafael da Rosa Couto ◽  
...  

Nitrous oxide (N2O) is one of the main gases that contributes to the greenhouse effect. With a Global Warming Potential (GWP) 265 times greater than that of carbon dioxide (CO2), over a 100-year horizon, N2O also has the potential for the depreciation of the ozone layer. The activities related to agriculture and livestock are responsible for approximately 60% of the global anthropogenic emissions of this gas to the atmosphere. In Brazil, the sector corresponds to 37% of total emissions. The objectives of this review article were: (i) To verify which are the main processes involved in N2O emissions in soils fertilized with swine manure; (ii) What are the direct emissions on these soils under different management systems, and; (iii) What are the possible strategies for controlling and mitigating N2O emissions. Therefore, an exploratory and qualitative research of articles was carried out using the following keywords: óxido nitroso’, ‘nitrous oxide’, ‘N2O’, ‘nitrogênio’, ‘nitrogen’, ‘suínos, ‘pig, ‘swine’, ‘dejetos’, ‘manure’ and ‘slurry’. Effects of pig diet, manure treatment systems, presence of heavy metals in the soil and moisture content of manure on N2O emissions were verified. Therefore, we recommend integrated studies of the quantitative and qualitative impacts of the levels and sources of nitrogen in the animals' diets on N2O emissions after the application of these wastes to the soil. We also recommend studies related to the effects of copper and zinc contents added to the soil via swine manure on enzymes that catalyze the biotic denitrification process in the soil.


2016 ◽  
Vol 154 (5) ◽  
pp. 812-827 ◽  
Author(s):  
M. J. BELL ◽  
J. M. CLOY ◽  
C. F. E. TOPP ◽  
B. C. BALL ◽  
A. BAGNALL ◽  
...  

SUMMARYIncreasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O. The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1·19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer-induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1·74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.


2006 ◽  
Vol 70 (1) ◽  
pp. 235-248 ◽  
Author(s):  
R. F. Grant ◽  
E. Pattey ◽  
T. W. Goddard ◽  
L. M. Kryzanowski ◽  
H. Puurveen

Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 572 ◽  
Author(s):  
Weijin Wang ◽  
Glen Park ◽  
Steven Reeves ◽  
Megan Zahmel ◽  
Marijke Heenan ◽  
...  

Nitrous oxide (N2O) emissions from sugarcane cropped soils are usually high compared with those from other arable lands. Nitrogen-efficient management strategies are needed to mitigate N2O emissions from sugarcane farming whilst maintaining productivity and profitability. A year-long field experiment was conducted in wet tropical Australia to assess the efficacy of polymer-coated urea (PCU) and nitrification inhibitor (3,4-dimethylpyrazole phosphate)-coated urea (NICU). Emissions of N2O were measured using manual and automatic gas sampling chambers in combination. The nitrogen (N) release from PCU continued for >5–6 months, and lower soil NO3– contents were recorded for≥3 months in the NICU treatments compared with the conventional urea treatments. The annual cumulative N2O emissions were high, amounting to 11.4–18.2kg N2O-Nha–1. In contrast to findings in most other cropping systems, there were no significant differences in annual N2O emissions between treatments with different urea formulations and application rates (0, 100 and 140kgNha–1). Daily variation in N2O emissions at this site was driven predominantly by rainfall. Urea formulations did not significantly affect sugarcane or sugar yield at the same N application rate. Decreasing fertiliser application rate from the recommended 140kgNha–1 to 100kgNha–1 led to a decrease in sugar yield by 1.3tha–1 and 2.2tha–1 for the conventional urea and PCU treatments, respectively, but no yield loss occurred for the NICU treatment. Crop N uptake also declined at the reduced N application rate with conventional urea, but not with the PCU and NICU. These results demonstrated that substituting NICU for conventional urea may substantially decrease fertiliser N application from the normal recommended rates whilst causing no yield loss or N deficiency to the crop. Further studies are required to investigate the optimal integrated fertiliser management strategies for sugarcane production, particularly choice of products and application time and rates, in relation to site and seasonal conditions.


Soil Research ◽  
2003 ◽  
Vol 41 (2) ◽  
pp. 197 ◽  
Author(s):  
Ian J. Rochester

Concern has mounted over recent decades regarding the emission of nitrous oxide (N2O) to the atmosphere through human activities. Modern agriculture has contributed to this with elevated use of nitrogenous fertilizers and irrigation. Irrigated cotton grown on alkaline heavy clay soils often uses nitrogen fertiliser inefficiently, due largely to N loss (commonly 50–100 kg N/ha) through denitrification. However, the amount of denitrified N emitted as N2O has rarely been measured. This paper derives estimates of the quantities of N2O emitted from N fertiliser applied to alkaline grey clays.A negative exponential function between the N2O/N2 mole fraction and soil pH was derived from a search of laboratory and field studies published by numerous authors using a wide range of soil types. A greater proportion of N2O relative to N2 is emitted from acid soils; approximately equivalent amounts of each gas are emitted from soil of pH 6.0. For the alkaline grey clays (pH 8.3–8.5), the N2O/N2 mole fraction was about 0.024.The quantities of N2O emitted from alkaline grey clays during the growth of a cotton crop were estimated by applying this relationship to 15N balance studies where N fertiliser losses had been measured. Using this approach, about 2 kg N/ha (~1.1% of the N applied) was calculated to be lost as N2O during the cotton-growing season. This is similar to the value of 1.25% commonly used to estimate N2O emissions from N fertiliser, but this estimation should only be applied to alkaline soils; a larger percentage of the fertiliser N denitrified from acid soils should be emitted as N2O-N. These estimates of N2O emissions require validation with field experimentation.The low (negligible) values for N2O emission from flooded fields compared with laboratory observations are discussed. It is possible that high N2O emissions observed under laboratory conditions result from the shallow depth of soil, reducing the opportunity for N2O to be further reduced as it diffuses through the soil profile. Management strategies that have the potential to reduce N2O emissions are discussed.


Sign in / Sign up

Export Citation Format

Share Document