Assessing drought resistance in seashore paspalum genotypes using leaf gas exchange, osmotic adjustment, and rooting characteristics

Crop Science ◽  
2020 ◽  
Author(s):  
Krishna B Katuwal ◽  
Viktor Tishchenko ◽  
David Jespersen
2019 ◽  
Vol 46 (3) ◽  
pp. 228 ◽  
Author(s):  
Felipe H. Barrios-Masias ◽  
Thorsten Knipfer ◽  
M. Andrew Walker ◽  
Andrew J. McElrone

Cultivars of grapevine are commonly grafted onto rootstocks to improve resistance against biotic and abiotic stress, however, it is not clear whether known differences in hydraulic traits are conferred from rootstocks to a common scion. We recently found that Vitis riparia and Vitis champinii differed in drought-induced embolism susceptibility and repair, which was related to differences in root pressure generation after rewatering (Knipfer et al. 2015). In the present study, we tested whether these and other physiological responses to drought are conferred to a common V. vinifera scion (Cabernet Sauvignon) grafted on V. riparia and V. champinii rootstocks. We measured xylem embolism formation/repair using in vivo microCT imaging, which was accompanied with analysis of leaf gas exchange, osmotic adjustment and root pressure. Our data indicate that differences in scion physiological behaviour for both rootstock combinations were negligible, suggesting that the sensitivity of Cabernet Sauvignon scion to xylem embolism formation/repair, leaf gas exchange and osmotic adjustment is unaffected by either V. riparia or V. champinii rootstock in response to drought stress.


Author(s):  
Marcela T. Miranda ◽  
Simone F. Da Silva ◽  
Neidiquele M. Silveira ◽  
Luciano Pereira ◽  
Eduardo C. Machado ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 540a-540
Author(s):  
K.J. Prevete ◽  
R.T. Fernandez

Three species of herbaceous perennials were tested on their ability to withstand and recover from drought stress periods of 2, 4, and 6 days. Eupatorium rugosum and Boltonia asteroides `Snowbank' were chosen because of their reported drought intolerance, while Rudbeckia triloba was chosen based on its reported drought tolerance. Drought stress began on 19 Sept. 1997. Plants were transplanted into the field the day following the end of each stress period. The effects of drought on transpiration rate, stomatal conductance, and net photosynthetic rate were measured during the stress and throughout recovery using an infrared gas analysis system. Leaf gas exchange measurements were taken through recovery until there were no differences between the stressed plants and the control plants. Transpiration, stomatal conductance, and photosynthesis of Rudbeckia and Boltonia were not affected until 4 days after the start of stress. Transpiration of Eupatorium decreased after 3 days of stress. After rewatering, leaf gas exchange of Boltonia and Rudbeckia returned to non-stressed levels quicker than Eupatorium. Growth measurements were taken every other day during stress, and then weekly following transplanting. Measurements were taken until a killing frost that occurred on 3 Nov. There were no differences in the growth between the stressed and non-stressed plants in any of the species. Plants will be monitored throughout the winter, spring, and summer to determine the effects of drought on overwintering capability and regrowth.


2015 ◽  
Vol 38 (8) ◽  
pp. 1503-1513 ◽  
Author(s):  
THORSTEN KNIPFER ◽  
ASHLEY EUSTIS ◽  
CRAIG BRODERSEN ◽  
ANDREW M. WALKER ◽  
ANDREW J. MCELRONE

Nature Plants ◽  
2021 ◽  
Author(s):  
Diego A. Márquez ◽  
Hilary Stuart-Williams ◽  
Graham D. Farquhar

Sign in / Sign up

Export Citation Format

Share Document