Physiological Mechanisms of Drought Resistance in Seashore Paspalum

CSA News ◽  
2021 ◽  
2021 ◽  
Author(s):  
Daniel N Ginzburg ◽  
Flavia Bossi ◽  
Sueng Yon Rhee

Understanding the molecular and physiological mechanisms of how plants respond to drought is paramount to breeding more drought resistant crops. Certain mutations or allelic variations result in plants with altered water-use requirements. To correctly identify genetic differences which confer a drought phenotype, plants with different genotypes must therefore be subjected to equal levels of drought stress. Many reports of advantageous mutations conferring drought resistance do not control for soil water content variations across genotypes and may therefore need to be re-examined. Here, we reassessed the drought phenotype of the Arabidopsis thaliana dwarf mutant, chiquita1-1 (also called cost1), by growing mutant seedlings together with the wild type to ensure uniform soil water availability across genotypes. Our results demonstrate that the dwarf phenotype conferred by loss of CHIQ1 function results in constitutively lower water usage, but not increased drought resistance.


HortScience ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Mohamed A. Shahba ◽  
Mohamed S. Abbas ◽  
Saad F. Alshammary

Understanding how mowing height and soil moisture influence drought resistance mechanisms may lead to better management of seashore paspalum. This research was conducted to evaluate the effect of mowing height and soil moisture replacement on drought tolerance strategies in three seashore paspalum cultivars. In a greenhouse, clear polyvinyl chloride (PVC) root tubes were placed in a black PVC sleeve with a bottom cap drilled with holes for drainage. Sod pieces (10 cm in diameter) of seashore paspalum (Paspalum vaginatum Swartz) cultivars Salam, Excalibur, and Adalayd were planted into these tubes after roots were trimmed. In a split-split experimental design, water regimes applied included control [100% of the total evapotranspiration (ET)] as well as 75%, 50%, and 25% of the total ET. Mowing heights were 45.0, 35, and 25 mm. Visual turf quality, maximum root extension (MRE), root length densities (RLD), total nonstructural carbohydrate content (TNC), shoot reducing sugar content (RSC), and proline content were determined. Turf quality decreased linearly with the decrease in irrigation water applied under the three mowing heights with higher slope at 25.0 mm than at either 35.0 or 45.0 mm. ‘Salam’ turf quality declined only to the unacceptable rating of 5.5 and 4.5 when mowed to 35 and 25 mm, respectively, whereas quality was 6.5 at the mowing height of 45 mm under the water regime of 25% of total ET. ‘Excalibur’ did not show acceptable turf quality at the 25% treatment, whereas ‘Adalayd’ did not show such quality at both 50% and 25% water regimes under all mowing heights. Regression analysis indicated a significant negative association between RLD and drought levels at all mowing heights and soil depths. In ‘Salam’, as drought levels increased from control to 25%, average RLD decreased by 76%, 75%, and 76% at 25-, 35-, and 45-mm mowing heights, respectively, at the top 30 cm of soil in the column. The change was 93%, 85%, and 83% at 25-, 35-, and 45-mm mowing heights, respectively, at the deeper soil (90 to 120 cm). In ‘Salam’, on average overall water regimes, MRE at 45 mm was ≈10% to 17% greater than that of 35-mm mowing height and 28% to 36% greater than that of 25-mm mowing height. The highest root mass (810 mg) was obtained when ‘Salam’ was mowed to 45 mm and subjected to the drought level of 50% of the total ET. The lowest root mass (320 mg) was obtained when ‘Salam’ was mowed to 25 mm and the water regime was not limiting. In ‘Salam’, as drought increased from control to 25% of the total ET, average TNC decreased by 43.5%, 26.0%, and 29.0% and the average TNC decrease in ‘Excalibur’ shoots was 48.0%, 30.0%, and 32.0%, whereas the decrease in ‘Adalayd’ was 51.3%, 42.3%, and 35.4% at 25-, 35-, and 45-mm mowing heights, respectively. As drought levels increased from control to 25% of the total ET, average RSC increased by 57.3%, 57.1%, and 53.0% in ‘Salam’ and by 59.4%, 57.0%, and 51.5% in ‘Excalibur’ and 61.2%, 58.1%, and 61.0% in ‘Adalayd’ at 25-, 35-, and 45-mm mowing height, respectively. When drought increased to 25%, average proline content in shoots increased by 435%, 432%, and 431% in ‘Salam’; 404%, 376%, and 324% in ‘Excalibur’; and 257%, 278%, and 302% in ‘Adalayd’, at 25-, 35-, and 45-mm mowing heights. The resistance of paspalum cultivars to moderate to high drought stress can be enhanced by increasing the mowing height that may be related to increased carbon fixation, which favors increased root production. Proline accumulation could add to the drought tolerance through osmoregulation or by acting as a carbon and nitrogen sink for stress recovery.


2011 ◽  
Vol 21 (6) ◽  
pp. 726-736 ◽  
Author(s):  
Songul Severmutlu ◽  
Nedim Mutlu ◽  
Ercan Gurbuz ◽  
Osman Gulsen ◽  
Murat Hocagil ◽  
...  

There is a dearth of information about turfgrass drought resistance and adaptation in the Mediterranean region of Turkey. Turfgrass managers in this region need this information to help them make informed decisions regarding turfgrass selection and management. This research was conducted to assess the drought resistance of bermudagrass (Cynodon dactylon), buffalograss (Buchloe dactyloides), bahiagrass (Paspalum notatum), seashore paspalum (Paspalum vaginatum), zoysiagrass (Zoysia japonica), centipedegrass (Eremochloa ophiuroides), and tall fescue (Lolium arundinaceum) under Mediterranean conditions of Turkey. The study was conducted at two locations, Antalya and Mersin, and was repeated in 2006 and 2007 at both locations. One year after establishment, the turfs were subjected to drought stress for 90 days, which was followed by resumption of irrigation for recovery of the turf. Percentage leaf firing, turfgrass quality, and percent green shoot recovery were recorded. There were inter and intraspecies differences detected for percentage leaf firing and shoot recovery. Bermudagrass, bahiagrass, and buffalograss exhibited superior drought resistance as demonstrated by lower leaf firing and better shoot recovery values when compared with other species studied. Centipedegrass and zoysiagrass demonstrated a high leaf firing and very poor shoot recovery, whereas zoysiagrass and tall fescue were unable to recover from the drought stress in the sandy soil. Results showed that ‘SWI-1045’ (Contessa®) and ‘SWI-1044’ bermudagrass and ‘Cody’ buffalograss possessed superior drought resistance with acceptable turfgrass quality up to 30 days under drought stress that can be used for water-efficient turf management under the Mediterranean environment.


2015 ◽  
Vol 140 (2) ◽  
pp. 151-162 ◽  
Author(s):  
Junqin Zong ◽  
Yanzhi Gao ◽  
Jingbo Chen ◽  
Hailin Guo ◽  
Yi Wang ◽  
...  

Waterlogging (WL) negatively affects plant growth and development, but the physiological responses of turfgrass species to WL are not well understood. The objective of this study was to examine growth and physiological mechanisms of WL tolerance in warm-season turfgrass species. Knotgrass (Paspalum paspaloides), spiny mudgrass (Pseudoraphis spinescens), seashore paspalum (Paspalum vaginatum), and centipedegrass (Eremochloa ophiuroides) were subjected to 30 days of WL. At the end of the treatment, knotgrass and spiny mudgrass maintained the shoot and root biomass while seashore paspalum and centipedegrass showed reductions in biomass under WL. Root oxidase activity (ROA) was unaffected until after 12 or 18 days of WL but decreased by 14.3%, 17.8%, 32.0%, and 68.7% at 30 days of WL for knotgrass, spiny mudgrass, seashore paspalum, and centipedegrass, respectively. Waterlogging increased root activities of lactate dehydrogenase and alcohol dehydrogenase, but generally to a lesser extent in knotgrass and spiny mudgrass. The leaf and root activities of superoxide dismutase (SOD) and peroxidase (POD) were induced after 6 or 12 days of WL, but to a greater extent for knotgrass and spiny mudgrass. At 30 days of WL, the increased leaf and root activities of SOD and POD were higher in knotgrass and spiny mudgrass than that of seashore paspalum and centipedegrass; while centipedegrass showed 37.8% reduction in root SOD activity. The total soluble protein (TSP) concentration remained unchanged in both leaves and roots during the entire WL treatment for knotgrass, while a decreased leaf TSP was found in the other three species after 12 or 24 days of WL as well as in the roots of seashore paspalum and centipedegrass. More reductions in leaf or root TSP were observed in seashore paspalum and centipedegrass than in knotgrass and spiny mudgrass at 30 days of WL. The results indicated that higher ROA, activities of antioxidant enzymes and TSP contributed to WL tolerance of warm-season turfgrass species.


2020 ◽  
Vol 13 (3) ◽  
pp. 304-310
Author(s):  
Jarosław Woroń

The development of pain is associated with numerous physiological mechanisms. Improper acute pain treatment significantly reduces the quality of life and leads to a number of physiological changes that adversely affect the general condition of the patient. In many cases, inadequate analgesic therapy results in the transition from acute to chronic pain. For this reason, it is extremely important to use drugs that synergistically affect various pain mechanisms. Combined preparations, including the combination of tramadol and dexketoprofen, are very effective. This combination has many advantages, including proven efficacy and tolerability, ensures better treatment adherence and is easy to administer.


Biomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 394-397
Author(s):  
Seldimirova O.A. ◽  
M.V. Bezrukova ◽  
N.N. Кruglova ◽  
F.М. Shakirova

The influence of 24-epibrassinolide on the efficiency of regenerants obtained from embryonic calli formation was studied in wheat cultivars contrast for drought resistance. The possibility of using the experimental model system «immature embryo – embryonic callus – regenerant» in the rapid assessment of the effect of antistress plant growth regulators is shown.


Sign in / Sign up

Export Citation Format

Share Document