biotic and abiotic stress
Recently Published Documents





2022 ◽  
Vol 22 (1) ◽  
Qi Zhang ◽  
Jing Geng ◽  
Yanli Du ◽  
Qiang Zhao ◽  
Wenjing Zhang ◽  

Abstract Background Common bean (Phaseolus vulgaris) is an essential crop with high economic value. The growth of this plant is sensitive to environmental stress. Heat shock factor (Hsf) is a family of antiretroviral transcription factors that regulate plant defense system against biotic and abiotic stress. To date, few studies have identified and bio-analyzed Hsfs in common bean. Results In this study, 30 Hsf transcription factors (PvHsf1–30) were identified from the PFAM database. The PvHsf1–30 belonged to 14 subfamilies with similar motifs, gene structure and cis-acting elements. The Hsf members in Arabidopsis, rice (Oryza sativa), maize (Zea mays) and common bean were classified into 14 subfamilies. Collinearity analysis showed that PvHsfs played a role in the regulation of responses to abiotic stress. The expression of PvHsfs varied across different tissues. Moreover, quantitative real-time PCR (qRT-PCR) revealed that most PvHsfs were differentially expressed under cold, heat, salt and heavy metal stress, indicating that PvHsfs might play different functions depending on the type of abiotic stress. Conclusions In this study, we identified 30 Hsf transcription factors and determined their location, motifs, gene structure, cis-elements, collinearity and expression patterns. It was found that PvHsfs regulates responses to abiotic stress in common bean. Thus, this study provides a basis for further analysis of the function of PvHsfs in the regulation of abiotic stress in common bean.

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 198
Dragana Stojičić ◽  
Svetlana Tošić ◽  
Gordana Stojanović ◽  
Bojan Zlatković ◽  
Snežana Jovanović ◽  

Clinopodium pulegium (Rochel) Bräuchler (Lamiaceae) is an endangered species endemic to the Southern Carpathians. It is characterized by the production of high amounts of essential oils, which emit volatile organic compounds (VOCs) that have an essential role in biotic and abiotic stress responses and in plant–plant and plant–insect interactions. The present study was initiated to phytochemically examine the influence of different carbon sources in the nutrition medium on VOC emissions of micropropagated C. pulegium plants, using gas chromatography–mass spectrometry analysis of headspace VOCs. The volatile profiles were subjected to multivariate analysis with respect to the presence, concentration and type of carbon source in the nutrient medium. In addition, the effect of different carbohydrates on the density and size of the leaf glandular trichomes, the main structures involved in the emission of VOCs, was determined. A total of 19 VOCs, primarily belonging to mono- and sesquiterpenes previously described in plants, were tentatively identified. Six VOCs were produced at levels higher than 2% of the total VOC emission, dominated by pulegone, ß-pinene and menthone. Inclusion of the carbohydrates in the culture media affected the production of the main leaf trichome-associated volatile allelochemicals although the qualitative composition of the volatiles changed only slightly. Multivariate analysis showed that the concentration, rather than the carbohydrate type, influenced the VOC profile.

2022 ◽  
Vol 8 (1) ◽  
pp. 4
Yashraaj Sharma ◽  
Alok Sharma ◽  
Madhu ◽  
Shumayla ◽  
Kashmir Singh ◽  

Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential that contain more than 200 nucleotides that play important roles in plant survival in response to different stresses. They interact with molecules such as DNA, RNA, and protein, and play roles in the regulation of chromatin remodeling, RNA metabolism, and protein modification activities. These lncRNAs regulate the expression of their downstream targets through epigenetic changes, at the level of transcription and post-transcription. Emerging information from computational biology and functional characterization of some of them has revealed their diverse mechanisms of action and possible roles in biological processes such as flowering time, reproductive organ development, as well as biotic and abiotic stress responses. In this review, we have mainly focused on the role of lncRNAs in biotic stress response due to the limited availability of knowledge in this domain. We have discussed the available molecular mechanisms of certain known lncRNAs against specific pathogens. Further, considering that fungal, viral, and bacterial diseases are major factors in the global food crisis, we have highlighted the importance of lncRNAs against pathogen responses and the progress in plant research to develop a better understanding of their functions and molecular mechanisms.

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 164
Van Trang Le ◽  
Me-Sun Kim ◽  
Yu-Jin Jung ◽  
Kwon-Kyoo Kang ◽  
Yong-Gu Cho

Nowadays, rice production faces significant challenges due to population pressure, global climate change, and outbreak of various pests and diseases. Breeding techniques used to improve rice traits include mutant breeding, cross breeding, heterogeneity, transformation, molecular markers, genome-wide association study (GWAS), and so on. Since the recently developed CRISPR/Cas9 technology can directly target a specific part of a desired gene to induce mutation, it can be used as a powerful means to expand genetic diversity of crops and develop new varieties. So far, CRISPR/Cas9 technology has been used for improving rice characteristics such as high yield, good quality, abundant nutrition, pest and disease resistance, herbicide resistance, and biotic and abiotic stress resistance. This review highlights the mechanisms and optimization of the CRISPR system and its application to rice crop, including resistance to biotic and abiotic stresses, and improved rice quality and yield.

2022 ◽  
Vol 73 (1) ◽  
Olga Serra ◽  
Ari Pekka Mähönen ◽  
Alexander J. Hetherington ◽  
Laura Ragni

The periderm acts as armor protecting the plant's inner tissues from biotic and abiotic stress. It forms during the radial thickening of plant organs such as stems and roots and replaces the function of primary protective tissues such as the epidermis and the endodermis. A wound periderm also forms to heal and protect injured tissues. The periderm comprises a meristematic tissue called the phellogen, or cork cambium, and its derivatives: the lignosuberized phellem and the phelloderm. Research on the periderm has mainly focused on the chemical composition of the phellem due to its relevance as a raw material for industrial processes. Today, there is increasing interest in the regulatory network underlying periderm development as a novel breeding trait to improve plant resilience and to sequester CO2. Here, we discuss our current understanding of periderm formation, focusing on aspects of periderm evolution, mechanisms of periderm ontogenesis, regulatory networks underlying phellogen initiation and cork differentiation, and future challenges of periderm research. Expected final online publication date for the Annual Review of Plant Biology, Volume 73 is May 2022. Please see for revised estimates.

Abdulrezzak Memon

Recently, most genomic research has focused on genome editing methods to develop new technologies that could be easy, reliable, and feasible to edit plant genomes for highly productive agriculture. Genome editing is based on alternating a specific target DNA sequence by adding, replacing, and removing DNA bases. This newest technology called CRISPR/Cas9 seems to be less time-consuming, more effective and used in many research areas of plant genetic research. CRISPR/Cas9 systems have many advantages in comparison with ZFNs and TALENs and has been extensively used for genome editing to many crop plant species. Around 20 crop species are successfully worked out for trait improvements, for example, yield improvement, disease resistance, herbicide tolerance, and biotic and abiotic stress management. This review paper will overview recent advances in CRISPR/Cas genome editing research in detail. The main focus will be on the use of CRISPR/Cas9 technology in plant genome research.

Mohadeseh Hassanisaadi ◽  
Mahmood Barani ◽  
Abbas Rahdar ◽  
Moslem Heidary ◽  
Anna Thysiadou ◽  

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 59
Katarzyna Nawrot-Chorabik ◽  
Małgorzata Sułkowska ◽  
Małgorzata Osmenda ◽  
Vasyl Mohytych ◽  
Ewa Surówka ◽  

Fraxinus excelsior L. is threatened by a variety of environmental factors causing a decline of the species. The most important biotic factors negatively affecting the condition of the F. excelsior population are fungi such as the pathogen Hymenoscyphus fraxineus. Abiotic factors with potentially harmful effect to the F. excelsior population are the accumulation of heavy metals and salinity in soils. Thus, the aim of this study was to investigate the impact of selected biotic and abiotic stress factors to determine which of them pose a threat to European ash. The study was conducted using in vitro techniques based on callus and seedlings regenerated via indirect organogenesis. Tissue cultures exclude the influence of other factors, including the environmental impact on ash extinction. The results confirmed very strong pathogenic potential of H. fraxineus in which after 14 days the callus tissue cells died as the tissue failed to activate its defense mechanisms. Experiments showed the high toxicity of cadmium in concentration of 0.027 mmol/L. Salinity caused the activity of oxidation enzymes to vary among seedlings and calluses in the control suggesting the enzymes play a role in controlling the morphogenetic development of tissue cultures.

2022 ◽  
Vol 951 (1) ◽  
pp. 012052
H Oktarina ◽  
D R Adithia ◽  
T Chamzurni

Abstract Endophytic fungi are recognised for producing secondary metabolites that have an effect on the host, such as promoting growth and enhancing plant resilience to biotic and abiotic stress. The objective of this study was to explore endophytic fungi from Citrus reticulata. The endophytic fungi were isolated from both healthy and infected roots, stems, and twigs of C. reticulata. The materials were sterilised and inoculated on potato dextrose agar (PDA) media. The fungi grown were transferred onto fresh PDA plates and identified based on their morphological characteristic, including colonial features, hyphae type, and reproduction structure. Five endophytic fungi were identified as Colletotrichum sp. AJSH2-1, Cylindrocladium sp. BJSH1-2, Rhizopus sp. RJSH1-1, Mucor sp. RJSH1-2, and Aspergillus sp. BJSH1-1. Further study is required to understand the ability of the identified genera in protecting the host from plant disease as well as promoting growth.

Sign in / Sign up

Export Citation Format

Share Document