Output-voltage feedback control topology for inverters dedicated to renewable energy systems

2017 ◽  
Vol 45 (12) ◽  
pp. 2270-2280 ◽  
Author(s):  
Mustapha Arab ◽  
Abdallah Zegaoui ◽  
Pierre Petit ◽  
Abdelkader Djahbar ◽  
Michel Aillerie
Author(s):  
Sujatha M ◽  
A.K. Parvathy

<p>New improved multilevel inverter (MLI) topology for Renewable energy systems is proposed in this paper. Cascaded multilevel inverters (CMLI) produce an output voltage level depending on the number of individual sources connected. The main drawback of CMLI is, as the output voltage level increases in number, the switches used in the device also increases and hence the complexity of the circuit increases. As the number of switches increases, the reliability of the circuit decreases. In this paper a novel MLI topology, which employs lesser number of switches, is proposed. A simulation model of CMLI and the proposed MLI has been built in MATLAB/SIMULINK. The reliability of the CMLI and the new topology MLI is analyzed by using MIL-HDBK-217.  </p>


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6627
Author(s):  
Vijayaraja Loganathan ◽  
Ganesh Kumar Srinivasan ◽  
Marco Rivera

In this paper, a ‘k’-state inverter producing a higher number of voltage levels was designed, and we studied the inverter’s working. Further, a tri-state inverter was derived from the ‘k’-state inverter, which could build a maximum number of output voltage levels with the requirement of fewer components, thereby reducing the cost and size. A single Tri-state architecture generates three direct current (D.C.) voltage levels; therefore, cascading five tri-state architectures can generate 242 levels of DC voltages. Further, the inversion is done via the H bridge, which leads to 485 levels of the output voltage. Algorithms to design the amplitude of voltage sources and the generation of pulses are discussed in this paper. The proposed tri-state inverter takes a significant role in advancing renewable energy systems in utilizing inverter technology. A simulation study validated the operation of the proposed inverter. Moreover, an experimental setup was built for a single-phase 485-level inverter, and the structure’s performance was verified through the experimental results.


2019 ◽  
Vol 4 (1) ◽  
pp. 15-31
Author(s):  
Muhammad M. Roomi

AbstractSingle-stage energy converters, in particular, the Z-Source Inverter (ZSI) or impedance source inverter, has gained significant attention in the recent years. ZSI ensures flexible energy conversions (dc–dc, dc–ac, ac–ac and ac–dc) because of its unique ability to boost the output voltage in typical renewable energy systems. The impedance network integrated between the energy source and the load contributes to the unique functionality of the ZSI. As substantial research has been conducted on the ZSI, this article provides a review on the operation of ZSI. The article initially examines the various topologies commonly adopted for the application of the ZSI. Subsequently, details of the various modulation methods that are commonly used to obtain the voltage boosting using ZSI are documented. Additionally, the phenomenon of neutral point formation, which is an important impediment to the adoption of multilevel ZSIs and the limitation of the modulation methods, is explained.


2014 ◽  
Author(s):  
Miles Greiner ◽  
Amy Childress ◽  
Sage Hiibel ◽  
Kwang Kim ◽  
Chanwoo Park ◽  
...  

2017 ◽  
Author(s):  
Emma M. Elgqvist ◽  
Katherine H. Anderson ◽  
Dylan S. Cutler ◽  
Nicholas A. DiOrio ◽  
Nicholas D. Laws ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document