scholarly journals Effects of hoechst 33342 on survival and growth of two tumor cell lines and on hematopoietically normal bone marrow cells

Cytometry ◽  
1982 ◽  
Vol 3 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Jerrold Fried ◽  
Jeffrey Doblin ◽  
Shigeru Takamoto ◽  
Amaury Perez ◽  
Herbert Hansen ◽  
...  
Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 768-768 ◽  
Author(s):  
Yelena Kovtun ◽  
Gregory Jones ◽  
Charlene Audette ◽  
Lauren Harvey ◽  
Baudouin Gerard ◽  
...  

Abstract Current AML therapies are effective in a subset of patients, but often lead to prolonged myelosuppression. CD123 is an attractive AML target due to its elevated expression on AML compared to normal bone marrow cells. Still, severe myelosuppression and myeloablation have been reported in preclinical studies for some CD123-targeted therapies. Here, we present a novel ADC which selectively kills CD123-positive AML cells over normal bone marrow cells. A novel humanized anti-CD123 antibody with two engineered cysteines for payload conjugation was generated. Indolinobenzodiazepine dimers, termed IGNs, were chosen as payload molecules for the antibody due to their high potency against AML cells. The IGN dimers containing mono-imines alkylate DNA, whereas the di-imine containing IGNs can both alkylate and crosslink DNA. To select an optimal IGN payload, we compared the cytotoxicity of an ADC with a mono-imine IGN (A-ADC) to one with a di-imine IGN (C-ADC) on AML cells, as well as normal bone marrow cells in vitro. Potency of the ADCs was evaluated using AML cell lines that have CD123 levels similar to patient cells and carry markers of poor prognosis (FLT3-ITD , MDR1, EVI1, DNMT3A and TP53), as well as on samples from 11 AML patients. AML cells exposed to either ADC displayed markers of DNA damage, cell cycle arrest and apoptotic cell death by flow cytometry. Both ADCs were highly cytotoxic, generating IC50 values between 0.4 to 60 pM on the cell lines in WST-8 assays and killing 90 percent of progenitors from AML patients between 2 to 46 pM in CFU assays. The C-ADC was, on average, two-fold more active than the A-ADC. The cytotoxicity of both ADCs was CD123 dependent, since masking CD123 with a competing anti-CD123 antibody reduced the potency by more than 100-fold. Toxicity of the ADCs was assessed using bone marrow cells from a healthy human donor. The cells were exposed to the ADCs at 100 pM (a concentration highly potent against all AML samples) for 72 hours, and then markers of apoptosis were detected in different cell populations by flow cytometry. Neither ADC affected the viability of monocytes, lymphocytes and multipotential progenitors, consistent with low CD123 levels in these cell populations. In contrast, an apoptotic signal was detected in myeloid progenitors, the population with the highest CD123 level, following exposure to the C-ADC, but not to the A-ADC. The toxicity of the ADCs was also tested in CFU assays on bone marrow cells from 7 healthy donors, as the assays have been reported to predict clinical myelosuppression. Surprisingly, the C-ADC was, on average, 50-fold more cytotoxic to normal myeloid progenitors than the A-ADC (40 pM vs 2,000 pM IC90 values, respectively) (Figure 1). Finally, we compared CD123 independent toxicity of the ADCs in CD-1 mice. The C-ADC showed significantly reduced tolerability, and unlike the A-ADC, was associated with delayed toxicity manifested by weight loss 30 days after administration. Based on its potent yet highly selective toxicity to AML cells and more favorable tolerability profile, the A-ADC was selected for further study, and renamed as IMGN632. To compare IMGN632 to an ADC previously approved for the treatment of AML, the potency of IMGN632 and gemtuzumab ozogamicin (GO) was tested on bone marrow cells from 11 healthy donors and 17 AML patients, including 4 relapsed/refractory and 8 with strong multidrug resistance (Figure 1). Only 6 of 17 AML samples were sensitive to GO at concentrations that did not impact normal progenitors. In contrast, AML progenitors from all 17 patients were highly sensitive to IMGN632. Importantly, normal progenitors were only affected by IMGN632 at 150-fold higher concentrations. The pronounced difference between AML and normal progenitors in their sensitivity to IMGN632 likely reflects both higher CD123 levels on AML progenitors and the lower sensitivity of normal progenitors to the mono-imine IGN payload we observed in CFU assays. In conclusion, through use of a mono-imine IGN payload, IMGN632 demonstrated potent activity in all tested AML samples at concentrations far below levels that impact normal bone marrow cells, suggesting the potential for efficacy in AML patients in the absence of or with limited myelosuppression. These findings together with strong efficacy in multiple AML xenograft models (Kovtun et al., 21st EHA congress, 2016; Adams et al., 58th ASH annual meeting, 2016) support advancing IMGN632 into clinical trials. Disclosures Kovtun: ImmunoGen, Inc.: Employment. Jones:ImmunoGen, Inc.: Employment. Audette:ImmunoGen, Inc.: Employment. Harvey:ImmunoGen, Inc.: Employment. Gerard:ImmunoGen, Inc.: Employment. Wilhelm:ImmunoGen, Inc.: Employment. Bai:ImmunoGen, Inc.: Employment. Adams:ImmunoGen, Inc.: Employment. Goldmacher:ImmunoGen, Inc.: Employment. Chari:ImmunoGen: Employment. Chittenden:ImmunoGen, Inc.: Employment.


Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 737-743 ◽  
Author(s):  
DA Carson ◽  
DB Wasson ◽  
R Taetle ◽  
A Yu

2-Chlorodeoxyadenosine (CdA), an adenosine-deaminase-resistant purine deoxynucleoside, is markedly toxic toward human T-lymphoblastoid cell lines in vitro and is an effective agent against L1210 leukemia in vivo. The present studies have examined the toxicity, and in some cases, metabolism, of CdA in (1) multiple established human cell lines of varying phenotype, (2) leukemia and lymphoma cells taken directly from patients, (3) normal bone marrow cells, and (4) normal peripheral blood lymphocytes. Nanomolar concentrations of CdA blocked the proliferation of lymphoblastoid cell lines with a high ratio of deoxycytidine kinase to deoxynucleotidase. The drug had virtually no effect on the growth of cell lines derived from solid tissues. The CdA inhibited the spontaneous uptake of tritiated thymidine by many T and non-T, non-B acute lymphoblastic leukemia cell specimens at concentrations less than or equal to 5 nM. The same concentrations did not impair either thymidine uptake or granulocyte-monocyte colony formation by normal bone marrow cells. In common with deoxyadenosine, but unlike several other agents affecting purine and purine metabolism, CdA was lethal to resting normal T lymphocytes and to slowly dividing malignant T cells. In both resting and proliferating lymphocytes, the CdA was phosphorylated by deoxycytidine kinase and entered a rapidly turning over nucleotide pool. Dividing lymphocytes also incorporated abundant CdA into DNA. The selective toxicity of CdA toward both dividing and resting lymphocytes may render the drug useful as an immunosuppressive or antileukemic agent.


Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 737-743 ◽  
Author(s):  
DA Carson ◽  
DB Wasson ◽  
R Taetle ◽  
A Yu

Abstract 2-Chlorodeoxyadenosine (CdA), an adenosine-deaminase-resistant purine deoxynucleoside, is markedly toxic toward human T-lymphoblastoid cell lines in vitro and is an effective agent against L1210 leukemia in vivo. The present studies have examined the toxicity, and in some cases, metabolism, of CdA in (1) multiple established human cell lines of varying phenotype, (2) leukemia and lymphoma cells taken directly from patients, (3) normal bone marrow cells, and (4) normal peripheral blood lymphocytes. Nanomolar concentrations of CdA blocked the proliferation of lymphoblastoid cell lines with a high ratio of deoxycytidine kinase to deoxynucleotidase. The drug had virtually no effect on the growth of cell lines derived from solid tissues. The CdA inhibited the spontaneous uptake of tritiated thymidine by many T and non-T, non-B acute lymphoblastic leukemia cell specimens at concentrations less than or equal to 5 nM. The same concentrations did not impair either thymidine uptake or granulocyte-monocyte colony formation by normal bone marrow cells. In common with deoxyadenosine, but unlike several other agents affecting purine and purine metabolism, CdA was lethal to resting normal T lymphocytes and to slowly dividing malignant T cells. In both resting and proliferating lymphocytes, the CdA was phosphorylated by deoxycytidine kinase and entered a rapidly turning over nucleotide pool. Dividing lymphocytes also incorporated abundant CdA into DNA. The selective toxicity of CdA toward both dividing and resting lymphocytes may render the drug useful as an immunosuppressive or antileukemic agent.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5035-5035
Author(s):  
Stavroula Baritaki ◽  
Sara Huerta-Yepez ◽  
Alina Katsman ◽  
Kam C. Yeung ◽  
Devasis Chatterjee ◽  
...  

Abstract There is a need to identify underlying molecular mechanisms and gene products (targets for intervention and biomarkers) involved in MM chemo- or immuno-resistance. Recent findings from our laboratory have reported high expression of the transcription factor Yin Yang 1 (YY1) in several tumor types and have demonstrated its fundamental role in tumor cell chemo/immuno-resistance (Gordon, S., et al., Oncogene25:1125, 2006). In contrast, low levels of the Raf kinase inhibitor protein (RKIP) has been shown to play a pivotal role in the negative regulation of cell survival signaling pathways, and has been considered a metastasis tumor suppressor. The overall objective of our studies is to examine whether MM cell lines and tissues derived from MM patients present deregulated expression patterns of RKIP and YY1, and to demonstrate the roles of YY1 and RKIP in MM pathogenesis and response to various therapies. In the present study, the myeloma cell lines RPMI-8226 and MM-1S were screened for RKIP and YY1 expression at the protein and m-RNA levels. In addition, fresh tissues from MM patients were also examined for RKIP and YY1 expression by IHC and their patterns compared with those observed in normal bone marrow cells. The findings demonstrate that both MM cell lines express remarkably higher levels of RKIP protein and transcripts compared to other tumor cell lines examined (lymphomas and prostate cancer), as assessed by western, RT-PCR and IHC. There was significantly higher expression of RKIP in MM patient’s samples compared to normal bone marrow cells. YY1 protein and m-RNA levels were detected in the MM cell lines; however, they were lower compared to Ramos and PC-3 cells. YY1 expression in MM tissues was significantly elevated compared to normal bone marrow cells. RKIP was basically present in the cytoplasm while YY1 was mainly accumulated in the nucleus. In contrast, normal bone marrow cells presented primarily cytoplasmic YY1 and RKIP expression. The YY1 expressing population was the CD38+/CD138− cell subset, which has been reported to be more susceptible to apoptosis (Mitsiadis, S.C., et al., Blood 98:795, 2001). Overall, the present findings support the potential involvement of two new gene products, such as YY1 and RKIP, in MM pathogenesis and their implication in regulating MM resistance to conventional therapeutics. Moreover, these gene products suggest their potential use as new therapeutic targets and/or biomarkers in multiple myeloma. Future studies with large cohorts of tissues will elucidate the importance of the above findings and will give new insights in the unexpected RKIP over expression and activity in multiple myeloma.


2009 ◽  
Vol 33 (1) ◽  
pp. 170-173 ◽  
Author(s):  
Fermin M. Sanchez-Guijo ◽  
Jesus M. Hernandez ◽  
Eva Lumbreras ◽  
Patricia Morais ◽  
Carlos Santamaría ◽  
...  

Nature ◽  
1977 ◽  
Vol 265 (5596) ◽  
pp. 736-737 ◽  
Author(s):  
STANLEY ZUCKER ◽  
RITA LYSIK

1986 ◽  
Vol 37 (6) ◽  
pp. 819-823 ◽  
Author(s):  
Diana A. Worthington-White ◽  
John R. Graham-Pole ◽  
Susan A. Stout ◽  
Christopher M. Riley

1995 ◽  
Vol 120 (2) ◽  
pp. 826-828
Author(s):  
I. V. Avdeev ◽  
V. I. Seledtsov ◽  
I. V. Prokopenko ◽  
G. V. Seledtsova ◽  
V. A. Kozlov

Sign in / Sign up

Export Citation Format

Share Document