Effects of Ginkgolide B and Ginkgo biloba extract on local cerebral glucose utilization in the awake adult rat

1991 ◽  
Vol 23 (3) ◽  
pp. 219-225 ◽  
Author(s):  
Yvon Lamour ◽  
Harold W. Holloway ◽  
Stanley I. Rapoport ◽  
Timothy T. Soncrant
2020 ◽  
Vol 16 (7) ◽  
pp. 893-904
Author(s):  
Alessandra von Ahn ◽  
João Henrique Z. dos Santos

Background: The official compendium of the quantification of ginkgo flavonoids from Ginkgo biloba extract has been proposed using HPLC. The drawbacks of this technique appear to be due to the restricted efficiency in terms of the recovery results and suitability of the system for the quantification of these compounds. This study investigated the potential advantages and limitations of the development of efficient extraction methods for the recovery of flavonol glycosides (quercetin, kaempferol and isorhamnetin) and terpene trilactones (bilobalide, ginkgolide A, ginkgolide B and ginkgolide C) using extraction, quantification and detection techniques, namely, GC-FID and UHPLC-DAD, which are alternatives to those techniques available in the literature. Methods: Two different extraction methodologies have been developed for the determination of flavonoids (quercetin, kaempferol and isorhamnetin) and terpene trilactones (bilobalide, ginkgolide A, ginkgolide B and ginkgolide C) using ultra-high-pressure liquid chromatography coupled to a diode array detector and gas chromatography coupled to a flame ionization detector. Results: In this study, the Ginkgo biloba extract mass, hydrolysis preparation method (with or without reflux), and volume of the extraction solution seemed to affect the ginkgo flavonoid recovery. The UHPLC-based method exhibited higher extraction efficiency for ginkgo flavonoid quantification compared to the pharmacopoeial method. The developed method exhibited higher extraction efficiency for terpene quantification compared to the previous method that used extractive solution without pH adjustment, with less time of extraction and less amount of the sample and organic solvent aliquots. Conclusion: The UHPLC and GC analysis methods established in this study are both effective and efficient. These methods may improve the quality control procedures for ginkgo extract and commercial products available in today´s natural health product market. The results indicate that redeveloped extraction methods can be a viable alternative to traditional extraction methods.


Alcohol ◽  
2003 ◽  
Vol 29 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Jennifer E Learn ◽  
Daniel G Smith ◽  
William J McBride ◽  
Lawrence Lumeng ◽  
Ting-Kai Li

1996 ◽  
Vol 16 (4) ◽  
pp. 729-736 ◽  
Author(s):  
John Vissing ◽  
Martin Andersen ◽  
Nils H. Diemer

In exercise, little is known about local cerebral glucose utilization (LCGU), which is an index of functional neurogenic activity. We measured LCGU in resting and running (≈85% of maximum O2 uptake) rats (n = 7 in both groups) previously equipped with a tail artery catheter. LCGU was measured quantitatively from 2-deoxy-D-[1-14C]glucose autoradiographs. During exercise, total cerebral glucose utilization (TCGU) increased by 38% (p < 0.005). LCGU increased (p < 0.05) in areas involved in motor function (motor cortex 39%, cerebellum ≈110%, basal ganglia ≈30%, substantia nigra ≈37%, and in the following nuclei: subthalamic 47%, posterior hypothalamic 74%, red 61%, ambiguus 43%, pontine 61%), areas involved in sensory function (somatosensory 27%, auditory 32%, and visual cortex 42%, thalamus ≈75%, and in the following nuclei: Darkschewitsch 22%, cochlear 51%, vestibular 30%, superior olive 23%, cuneate 115%), areas involved in autonomic function (dorsal raphe nucleus 30%, and areas in the hypothalamus ≈35%, amygdala ≈35%, and hippocampus 29%), and in white matter of the corpus callosum (36%) and cerebellum (52%). LCGU did not change with exercise in prefrontal and frontal cortex, cingulum, inferior olive, nucleus of solitary tract and median raphe, lateral septal and interpenduncular nuclei, or in areas of the hippocampus, amygdala, and hypothalamus. Glucose utilization did not decrease during exercise in any of the studied cerebral regions. In summary, heavy dynamic exercise increases TCGU and evokes marked differential changes in LCGU. The findings provide clues to the cerebral areas that participate in the large motor, sensory, and autonomic adaptation occurring in exercise.


Sign in / Sign up

Export Citation Format

Share Document