Water-use response to climate factors at whole tree and branch scale for a dominant desert species in central Asia:Haloxylon ammodendron

Ecohydrology ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Chaolei Zheng ◽  
Quan Wang
2011 ◽  
Vol 41 (3) ◽  
pp. 509-523 ◽  
Author(s):  
Carlos A. Gonzalez-Benecke ◽  
Timothy A. Martin ◽  
Wendell P. Cropper,

The natural range of longleaf pine ( Pinus palustris P. Mill.) and slash pine ( Pinus elliottii var. elliottii Engelm.) includes most of the southeastern US Coastal Plain, and there is now considerable interest in using these species for ecological forestry, restoration, and carbon sequestration. It is therefore surprising that little information is currently available concerning differences in their ecological water relations in natural stands. In this study, we compared water use, stomatal conductance at the crown scale (Gcrown), and whole-tree hydraulic conductance of mature pine trees growing in a naturally regenerated mixed stand on a flatwoods site in north-central Florida. We found remarkable similarities between longleaf and slash pine in stored water use, nocturnal transpiration, and whole-tree hydraulic conductance. Mean daily transpiration rate was higher for slash than for longleaf pine, averaging 39 and 26 L·tree–1, respectively. This difference was determined by variations in tree leaf area. Slash pine had 60% more leaf area per unit basal sapwood area than longleaf pine, but the larger plasticity of longleaf pine stomatal regulation partially compensated for leaf area differences: longleaf pine had higher Gcrown on days with high volumetric water content (θv) but this was reduced to similar or even lower values than for slash pine on days with low θv. There was no species difference in the sensitivity of Gcrown to increasing vapor pressure deficit.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 883D-883 ◽  
Author(s):  
William L. Bauerle* ◽  
Nilakantan S. Rajaraman

A process-based whole-tree simulation model was used to simulate crown transpiration in several species and cultivars of nursery crops. To validate estimates, we measured transpiration in cultivars of red maple (Acer rubrum L.) to determine if there were differences in intraspecific variation that could affect estimates of whole tree water use. We used a combination of field and published data to parameterize additional species and cultivar differences in response to environment and/or management. The different water use estimates of the species and cultivars were related to their genetic variability in leaf biochemical limitations, where the relationship between stomatal conductance and photosynthetic rate may be so closely matched that stomatal conductance appears to adjust itself to the photosynthetic capacity of the species or cultivar. Model predictions indicated that species and cultivars that had higher biochemical limitation regulated transpiration by down regulation of the rate of carboxylation (Vcmax) and coupled photosynthetic electron transport (Jmax), whereas the reverse occurred as Vcmax and Jmax increased. Our model simulations show significant variation in transpiration due to both inter and intraspecific variation in biochemical limitations. These results suggest that models that do not account for inter and intraspecific variation, to reflect genetic variation in physiology, may over or under estimate transpiration. Therefore, physiology-based species and cultivar variation should be part of process-based simulations that assess nursery water use. Results also suggest that effects of leaf dark respiration adaptation interactions can concurrently reduce variation in water use estimates.


2020 ◽  
Author(s):  
Teresa E. Gimeno ◽  
Courtney E. Campany ◽  
John E. Drake ◽  
Craig V.M. Barton ◽  
Mark G. Tjoelker ◽  
...  

1997 ◽  
Vol 122 (2) ◽  
pp. 226-232 ◽  
Author(s):  
J.P. Syvertsen ◽  
M.L. Smith ◽  
J. Lloyd ◽  
G.D. Farquhar

Five- to six-year-old `Redblush' grapefruit (Citrus paradisi Macf.) trees on `Volkamer' lemon [VL = C. volkameriana (Ten. & Pasq.)] or sour orange (SO = C. aurantium L.) rootstock, were grown individually in 7.9-m3 lysimeters for 2.5 years using low to high rates of fertilizer N. Net CO2 assimilation (ACO2) of leaves and leaf dry mass per area (DM/a) increased with leaf N concentration, whereas leaf tissue C isotope discrimination (Δ) decreased. Leaf tissue Δ was negatively related to ACO2 and DM/a. Transient effects of rootstock on leaf N were reflected by similar effects on Δ. There was no effect of leaf N on water-use efficiency (WUE) of leaves (WUEL = ACO2/transpiration); WUEL was not correlated with Δ. Although photosynthetic N use efficiency (ACO2/N) consistently decreased with increased leaf N, Δ was not consistently related to ACO2/N. Annual canopy growth, tree evapotranspiration (ET), and fruit yield increased with whole tree N uptake. Leaf tissue Δ was negatively related to all of these tree measurements at the end of the second year. By that time, whole-tree WUE (WUET, annual canopy growth per ET) also was negatively related to Δ. Larger trees on VL had higher ET than trees on SO, but there were no rootstock effects on WUET or on Δ. Leaf tissue Δ was consistently higher than Δ values of trunk and woody root tissues. Citrus leaf tissue Δ can be a useful indicator of leaf N, characteristics of leaf gas exchange, tree growth, yield, and WUET in response to N availability.


2015 ◽  
Vol 29 (24) ◽  
pp. 4993-5002 ◽  
Author(s):  
Jian-Guo Zhang ◽  
Qiu-Yue He ◽  
Wei-Yu Shi ◽  
Kyoichi Otsuki ◽  
Norikazu Yamanaka ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Bo Li ◽  
Fang Huang ◽  
Shuai Chang ◽  
Ning Sun

Ecosystem water use efficiency (WUE) and carbon use efficiency (CUE), as two of the most important ecological indicators of an ecosystem, represent the carbon assimilation rate of unit water consumption and the capacity of transferring carbon from the atmosphere to potential carbon sinks. Revealing WUE and CUE changes and their impact factors is vital for regional carbon-water interactions and carbon budget assessment. Climate affects carbon and water processes differently. Compared to WUE, the variations in CUE in response to climate factors and human activity remain inadequately understood. In this study, ecosystem-level WUE and CUE variations in the Songnen Plain (SNP), Northeast China, during 2001–2015, were investigated using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. The relationships between WUE, CUE, main climate factors, and human impacts were explored. The results showed that ecosystem WUE and CUE have fluctuated over time, with regional average values of 1.319 gC·kg−1H2O and 0.516, respectively. Deciduous broad-leaved forests had the highest average WUE but the lowest CUE. The multiyear average CUE of grassland ranked in first place, while the lowest WUE indicated that a lesser capacity of net productivity was generated by the use of limited water supply. WUE and CUE showed a downward trend in most areas of the SNP, indicating that the carbon sequestration capacity of the terrestrial ecosystem became weaker in the past 15 years. Annual precipitation and relative humidity had positive influences on WUE and CUE in more than 60% of the study area. The total annual sunshine duration and annual average temperature negatively affected WUE and CUE in most areas. Human activities had a positive effect on ecosystem WUE changes in the SNP but might inhibit CUE variations. Our findings aid in understanding the biological regulation mechanisms of carbon-water cycle coupling and provide a scientific basis for formulating sustainable regional development strategies and guiding water and land resources management.


Trees ◽  
2014 ◽  
Vol 29 (3) ◽  
pp. 717-728 ◽  
Author(s):  
Erica I. von Allmen ◽  
John S. Sperry ◽  
Susan E. Bush

Trees ◽  
2014 ◽  
Vol 29 (1) ◽  
pp. 215-222 ◽  
Author(s):  
Bart A. E. Van de Wal ◽  
Adrien Guyot ◽  
Catherine E. Lovelock ◽  
David A. Lockington ◽  
Kathy Steppe

Forests ◽  
2013 ◽  
Vol 4 (1) ◽  
pp. 106-121 ◽  
Author(s):  
Philip Alcorn ◽  
David Forrester ◽  
Dane Thomas ◽  
Ryde James ◽  
R. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document