scholarly journals Mechanistic Insights into the Organocatalytic Kinetic Resolution of Oxazinones through Alcoholysis

Author(s):  
Cristina Trujillo ◽  
Sarah A. Cronin ◽  
Stephen J. Connon
Keyword(s):  
2020 ◽  
Vol 18 (21) ◽  
pp. 4024-4028
Author(s):  
David D. S. Thieltges ◽  
Kai D. Baumgarten ◽  
Carina S. Michaelis ◽  
Constantin Czekelius

Electronically modified, fluorinated catechins and epicatechins are enantioselectively synthesized in a short, convergent sequence via kinetic resolution.


2006 ◽  
Author(s):  
Jason Eames ◽  
Gregory Coumbarides ◽  
Marco Dingjan ◽  
Tony Flinn ◽  
Northern Northen ◽  
...  

2020 ◽  
Author(s):  
Kousuke Ebisawa ◽  
Kana Izumi ◽  
Yuka Ooka ◽  
Hiroaki Kato ◽  
Sayori Kanazawa ◽  
...  

Catalytic enantioselective synthesis of tetrahydrofurans, which are found in the structures of many biologically active natural products, via a transition-metal catalyzed-hydrogen atom transfer (TM-HAT) and radical-polar crossover (RPC) mechanism is described herein. Hydroalkoxylation of non-conjugated alkenes proceeded efficiently with excellent enantioselectivity (up to 94% ee) using a suitable chiral cobalt catalyst, <i>N</i>-fluoro-2,4,6-collidinium tetrafluoroborate, and diethylsilane. Surprisingly, absolute configuration of the product was highly dependent on the steric hindrance of the silane. Slow addition of the silane, the dioxygen effect in the solvent, thermal dependency, and DFT calculation results supported the unprecedented scenario of two competing selective mechanisms. For the less-hindered diethylsilane, a high concentration of diffused carbon-centered radicals invoked diastereoenrichment of an alkylcobalt(III) intermediate by a radical chain reaction, which eventually determined the absolute configuration of the product. On the other hand, a more hindered silane resulted in less opportunity for radical chain reaction, instead facilitating enantioselective kinetic resolution during the late-stage nucleophilic displacement of the alkylcobalt(IV) intermediate.


2017 ◽  
Vol 14 (5) ◽  
Author(s):  
Adam Sikora ◽  
Wiktor Dariusz Sroka ◽  
Tomasz Siódmiak ◽  
Michal Piotr Marszall

Sign in / Sign up

Export Citation Format

Share Document