racemic mixtures
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 40)

H-INDEX

31
(FIVE YEARS 2)

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1888
Author(s):  
Alejandro González-Benjumea ◽  
Dolores Linde ◽  
Juan Carro ◽  
René Ullrich ◽  
Martin Hofrichter ◽  
...  

Epoxide metabolites from n-3 and n-6 polyunsaturated fatty acids arouse interest thanks to their physiological and pharmacological activities. Their chemical synthesis has significant drawbacks, and enzymes emerge as an alternative with potentially higher selectivity and greener nature. Conversion of eleven eicosanoid, docosanoid, and other n-3/n-6 fatty acids into mono-epoxides by fungal unspecific peroxygenases (UPOs) is investigated, with emphasis on the Agrocybe aegerita (AaeUPO) and Collariella virescens (rCviUPO) enzymes. GC-MS revealed the strict regioselectivity of the n-3 and n-6 reactions with AaeUPO and rCviUPO, respectively, yielding 91%-quantitative conversion into mono-epoxides at the last double bond. Then, six of these mono-epoxides were obtained at mg-scale, purified and further structurally characterized by 1H, 13C and HMBC NMR. Moreover, chiral HPLC showed that the n-3 epoxides were also formed (by AaeUPO) with total S/R enantioselectivity (ee > 99%) while the n-6 epoxides (from rCviUPO reactions) were formed in nearly racemic mixtures. The high regio- and enantioselectivity of several of these reactions unveils the synthetic utility of fungal peroxygenases in fatty acid epoxidation.


2021 ◽  
Author(s):  
Anderson Duraes ◽  
J. Daniel Gezelter

We present a model to explain the mechanism behind enantiomeric separation under either shear flow or local rotational motion in a fluid. Local vorticity of the fluid imparts molecular rotation that couples to translational motion, sending enantiomers in opposite directions. Translation-rotation coupling of enantiomers is explored using the molecular hydrodynamic resistance tensor, and a molecular equivalent of the pitch of a screw is introduced to describe the degree of translation-rotation coupling. Molecular pitch is a structural feature of the molecules and can be easily computed, allowing rapid estimation of the pitch of 85 drug-like molecules. Simulations of model enantiomers in a range of fluids such as $\Lambda$- and $\Delta$-Ru(bpy)_3]Cl_2 in water and (R,R)- and (S,S)-atorvastatin in methanol support predictions made using molecular pitch values.A competition model and continuum drift diffusion equations are developed to predict separation of realistic racemic mixtures. We find that enantiomeric separation on a centimeter length scale can be achieved in hours, using experimentally-achievable vorticities. Additionally, we find that certain achiral objects can also exhibit a non-zero molecular pitch.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anna Ioannou ◽  
Ioanna Vareli ◽  
Andreas Kaltzoglou ◽  
Ioannis Koutselas

Abstract Three new hybrid two-dimensional (2D) organic–inorganic semiconductors are presented, which contain lead halides and a mixture of hexanediamine-based isomers in the stoichiometry [2,2,4(2,4,4)-trimethyl-1,6-hexanediamine]PbX4 (X = I, Br, Cl). These hexanediamine derivatives, with attached methyl groups at the carbon backbone of both isomers, determine the packing of the organic layers between the inorganic 2D sheets, while the optical absorption and photoluminescence spectra reveal excitonic peaks at T = 77 K and room temperature. The as-synthesized semiconductors were stored for three years in the dark and under low humidity and were examined again and the results were compared to those of the fresh materials. The chloride analogue, after the three year storage, displays white-like luminescence. The use of non-equivalent isomer and racemic mixtures in the organic component to form hybrid organic–inorganic semiconductors is an efficient method to alter the properties of 2D perovskites by tuning the isomers’ chemical functionalities. Finally, a comparison of the observed excitonic absorption and photoluminescence signals to that of analogous 2D compounds is discussed.


Author(s):  
Vincenzo Fotia ◽  
Angela Giorgia Potortì ◽  
Giovanna Loredana La Torre ◽  
Giuseppa Di Bella ◽  
Marcello Saitta
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3646
Author(s):  
Melyssa L. Grieve ◽  
Patrick R. W. J. Davey ◽  
Craig M. Forsyth ◽  
Brett M. Paterson

A 1,4,7,10-tetraazacyclododecane (cyclen) variant bearing two thiosemicarbazone pendant groups has been prepared. The ligand forms complexes with Mn2+, Co2+ and Zn2+. X-ray crystallography of the Mn2+, Co2+ and Zn2+ complexes showed that the ligand provides a six-coordinate environment for the metal ions. The Mn2+ and Zn2+ complexes exist in the solid state as racemic mixtures of the Δ(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and Δ(λ,λ,λ,λ)/Λ(δ,δ,δ,δ) diastereomers, and the Co2+ complex exists as the Δ(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and Δ(λ,λ,λ,δ)/Λ(δ,δ,δ,λ) diastereomers. Density functional theory calculations indicated that the relative energies of the diastereomers are within 10 kJ mol−1. Magnetic susceptibility of the complexes indicated that both the Mn2+ and Co2+ ions are high spin. The ligand was radiolabelled with gallium-68, in the interest of developing new positron emission tomography imaging agents, which produced a single species in high radiochemical purity (>95%) at 90 °C for 10 min.


2021 ◽  
Author(s):  
Roberto Fernandez-Maestre ◽  
Markus Doerr

<p><a>Racemic mixtures of twelve common </a>a-amino acids and three chiral drugs were tested for the separation of their enantiomers by ion mobility spectrometry (IMS)-quadrupole mass spectrometry (MS). Separations were tested by introducing chiral selectors in the mobility spectrometer buffer gas. (R)-α-(trifluoromethyl) benzyl alcohol, (R)-tetrahydrofuran-2-carbonitrile, (L)-ethyl lactate, methyl (S)-2-chloropropionate, and the R and S enantiomers of 2-butanol and 1-phenyl ethanol were evaluated as chiral selectors. Experimental conditions were varied during the tests including buffer gas temperature, concentration, and type of chiral selectors, analyte concentration, electrospray voltage, electrospray (ESI) solvent pH, and buffer gas flow. The individual enantiomers yielded different drift times for periods of up to 8 hours in a few experiments; such drift times were sufficiently different (~ 0.3 ms) to partially resolve the enantiomers in racemic mixtures, but these mixtures always yielded a single mobility peak at the experimental conditions tested with a drift time similar to that of one of the enantiomers. Energy calculations of the chiral selector –ion interactions showed that these separations are unlikely using 2-butanol as chiral selector but they might be feasible depending on the nature of chiral selectors and the type of enantiomers.</p>


2021 ◽  
Author(s):  
Roberto Fernandez-Maestre ◽  
Markus Doerr

<p><a>Racemic mixtures of twelve common </a>a-amino acids and three chiral drugs were tested for the separation of their enantiomers by ion mobility spectrometry (IMS)-quadrupole mass spectrometry (MS). Separations were tested by introducing chiral selectors in the mobility spectrometer buffer gas. (R)-α-(trifluoromethyl) benzyl alcohol, (R)-tetrahydrofuran-2-carbonitrile, (L)-ethyl lactate, methyl (S)-2-chloropropionate, and the R and S enantiomers of 2-butanol and 1-phenyl ethanol were evaluated as chiral selectors. Experimental conditions were varied during the tests including buffer gas temperature, concentration, and type of chiral selectors, analyte concentration, electrospray voltage, electrospray (ESI) solvent pH, and buffer gas flow. The individual enantiomers yielded different drift times for periods of up to 8 hours in a few experiments; such drift times were sufficiently different (~ 0.3 ms) to partially resolve the enantiomers in racemic mixtures, but these mixtures always yielded a single mobility peak at the experimental conditions tested with a drift time similar to that of one of the enantiomers. Energy calculations of the chiral selector –ion interactions showed that these separations are unlikely using 2-butanol as chiral selector but they might be feasible depending on the nature of chiral selectors and the type of enantiomers.</p>


Sign in / Sign up

Export Citation Format

Share Document