Sustainable Porous Carbon with High Specific Surface Area from Soybean Shell via Hydrothermal Carbonization with H 3 PO 4 for Electric Double‐Layer Capacitor Applications

2019 ◽  
Vol 8 (3) ◽  
pp. 1901103 ◽  
Author(s):  
Yan Wu ◽  
Jing-Pei Cao ◽  
Xiao-Yan Zhao ◽  
Qi-Qi Zhuang ◽  
Zhi Zhou ◽  
...  
2020 ◽  
Vol 4 (3) ◽  
pp. 43 ◽  
Author(s):  
Zheng Yue ◽  
Hamza Dunya ◽  
Maziar Ashuri ◽  
Kamil Kucuk ◽  
Shankar Aryal ◽  
...  

A new porous activated carbon (AC) material with very high specific surface area (3193 m2 g−1) was prepared by the carbonization of a colloidal silica-templated melamine–formaldehyde (MF) polymer composite followed by KOH-activation. Several electrical double-layer capacitor (EDLC) cells were fabricated using this AC as the electrode material. A number of organic solvent-based electrolyte formulations were examined to optimize the EDLC performance. Both high specific discharge capacitance of 130.5 F g−1 and energy density 47.9 Wh kg−1 were achieved for the initial cycling. The long-term cycling performance was also measured.


2021 ◽  
Vol 45 (12) ◽  
pp. 5712-5719
Author(s):  
Yongxiang Zhang ◽  
Peifeng Yu ◽  
Mingtao Zheng ◽  
Yong Xiao ◽  
Hang Hu ◽  
...  

Porous carbons with a high specific surface area (2314–3470 m2 g−1) are prepared via a novel KCl-assisted activation strategy for high-performance supercapacitor.


Author(s):  
Yaqi Yang ◽  
Ziqiang Shao ◽  
Feijun Wang

Abstract Due to the low specific capacitance and small specific surface area of conventional carbon materials used as electrode materials for double-layer capacitors, the search for more ideal materials and ingenious preparation methods remains a major challenge. In this study, fractional porous carbon nanosheets were prepared by co-doping Fe and N with chitosan as nitrogen source. The advantage of this method is that the carbon nanosheets can have a large number of pore structures and produce a large specific surface area. The presence of Fe catalyzes the graphitization of carbon in the carbon layer during carbonization process, and further increases the specific surface area of the electrode material. This structure provides an efficient ion and electron transport pathway, which enables more active sites to participate in the REDOX reaction, thus significantly enhancing the electrochemical performance of SCs. The specific surface area of CS-800 is up to 1587 m2 g−1. When the current density is 0.5 A g−1, the specific capacitance of CS-800 reaches 308.84 F g−1, and remains 84.61 % of the initial value after 10,000 cycles. The Coulomb efficiency of CS-800 is almost 100 % after a long cycle, which indicates that CS-800 has more ideal double-layer capacitance and pseudo capacitance.


2013 ◽  
Vol 182 ◽  
pp. 1-7 ◽  
Author(s):  
Baizeng Fang ◽  
Arman Bonakdarpour ◽  
Min-Sik Kim ◽  
Jung Ho Kim ◽  
David P. Wilkinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document