Using a hidden Markov model to analyse extreme rainfall events in Central-East Sardinia

2008 ◽  
Vol 19 (7) ◽  
pp. 702-713 ◽  
Author(s):  
Bruno Betrò ◽  
Antonella Bodini ◽  
Q. Antonio Cossu
Author(s):  
A. N. Rohith ◽  
Margaret W. Gitau ◽  
I. Chaubey ◽  
K. P. Sudheer

AbstractThe time distribution of extreme rainfall events is a significant property that governs the design of urban stormwater management structures. Accuracy in characterizing this behavior can significantly influence the design of hydraulic structures. Current methods used for this purpose either tend to be generic and hence sacrifice on accuracy or need a lot of model parameters and input data. In this study, a computationally efficient multistate first-order Markov model is proposed for use in characterizing the inherently stochastic nature of the dimensionless time distribution of extreme rainfall. The model was applied to bivariate extremes at 10 stations in India and 205 stations in the United States (US). A comprehensive performance evaluation was carried out with one-hundred stochastically generated extremes for each historically observed extreme rainfall event. The comparisons included: 1-h (15-min); 2-h (30-min); and, 3-h (45-min) peak rainfall intensities for India and (US) stations, respectively; number of first, second, third, and fourth-quartile storms; the dependence of peak rainfall intensity on total depth and duration; and, return levels and return periods of peak discharge when these extremes were applied on a hypothetical urban catchment. Results show that the model efficiently characterizes the time distribution of extremes with: Nash–Sutcliffe-Efficiency > 0.85 for peak rainfall intensity and peak discharge; < 20% error in reproducing different quartile storms; and, < 0.15 error in correlation analysis at all study locations. Hence the model can be used to effectively reproduce the time distribution of extreme rainfall events, thus increasing the confidence of design of urban stormwater management structures.


2012 ◽  
Vol 132 (10) ◽  
pp. 1589-1594 ◽  
Author(s):  
Hayato Waki ◽  
Yutaka Suzuki ◽  
Osamu Sakata ◽  
Mizuya Fukasawa ◽  
Hatsuhiro Kato

2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


MIS Quarterly ◽  
2018 ◽  
Vol 42 (1) ◽  
pp. 83-100 ◽  
Author(s):  
Wei Chen ◽  
◽  
Xiahua Wei ◽  
Kevin Xiaoguo Zhu ◽  
◽  
...  

2016 ◽  
Vol 7 (2) ◽  
pp. 76-82
Author(s):  
Hugeng Hugeng ◽  
Edbert Hansel

We have built an application of speech recognition for Indonesian geography dictionary based on Android operating system, named GAIA. This application uses a smartphone as a device to receive input in the form of a spoken word from a user. The approach used in recognition is Hidden Markov Model which is contained in the Pocketsphinx library. The phonemes used are Indonesian phonemes’ rule. The advantage of this application is that it can be used without internet access. In the application testing, word detection is done with four conditions to determine the level of accuracy. The four conditions are near silent, near noisy, far silent, and far noisy. From the testing and analysis conducted, it can be concluded that GAIA application can be built as a speech recognition application on Android for Indonesian geography dictionary; with the results in the near silent condition accuracy of word recognition reaches an average of 52.87%, in the near noisy reaches an average of 14.5%, in the far silent condition reaches an average of 23.2%, and in the far noisy condition reaches an average of 2.8%. Index Terms—speech recognition, Indonesian geography dictionary, Hidden Markov Model, Pocketsphinx, Android.


Sign in / Sign up

Export Citation Format

Share Document