Chemical effect of diluents on flame structure and NO emission characteristic in methane-air counterflow diffusion flame

2002 ◽  
Vol 26 (13) ◽  
pp. 1141-1160 ◽  
Author(s):  
Jeong Park ◽  
Seung-Gon Kim ◽  
Kee-Man Lee ◽  
Tae Kwon Kim
2021 ◽  
Vol 898 (1) ◽  
pp. 012006
Author(s):  
Conghao Li ◽  
Jingfu Wang ◽  
Ying Chen ◽  
Xiaolei Zhang

Abstract Ammonia, as a carbon-neutral fuel, draws people attentions recently. NH3/CH4 blends is considered as a kind of fuel. A numerical simulation of the effects of CO2 dilution on the combustion characteristics and NO emission of NH3/CH4 counterflow diffusion flame was conducted in this study. Diffusion flame structure, the influence of CO2 radiation characteristics on temperature and NO emission characteristics were studies at normal temperature and pressure. The dilution and radiation of CO2 reduce the flame temperature significantly. NO concentration decreased with the CO2 mole fraction increase effectively. The study extends the basic combustion characteristics of NH3 containing fuel.


2021 ◽  
Vol 11 (4) ◽  
pp. 1768
Author(s):  
Ying Chen ◽  
Jingfu Wang ◽  
Xiaolei Zhang ◽  
Conghao Li

A comprehensive numerical investigation of the uncoupled chemical, thermal, and transport effects of CO2 on the temperature of CH4/O2 counterflow diffusion flame under high pressure up to 5 atm was conducted. Three pairs of artificial species were introduced to distinguish the chemical effect, thermal effect, and the transport effect of CO2 on the flame temperature. The numerical results showed that both the chemical effect and the thermal effect of the CO2 dilution in the oxidizer side can decrease the flame temperature significantly, while the transport effect of CO2 can only slightly increase the flame temperature and can even be ignored. The reduction value of the temperature caused by the chemical effect of CO2 grows linearly, while that caused by the thermal effect increases exponentially. The RPchem and RPthermal are defined to explain the temperature reduction percentage due to the chemical effect and the thermal effect of CO2 in the total temperature reduction caused by CO2 dilution, respectively. The RPchem decreases with the increase of the pressure, the strain rate, and the CO2 dilution ratio, while the RPthermal behaves in the opposite manner. In the above conditions, the chemical effect plays a dominant role on the flame temperature reduction.


2004 ◽  
Vol 28 (14) ◽  
pp. 1255-1267 ◽  
Author(s):  
Dong-Jin Hwang ◽  
Jong-Wook Choi ◽  
Jeong Park ◽  
Sang-In Keel ◽  
Chang-Bo Ch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document