counterflow diffusion flame
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 12)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 898 (1) ◽  
pp. 012006
Author(s):  
Conghao Li ◽  
Jingfu Wang ◽  
Ying Chen ◽  
Xiaolei Zhang

Abstract Ammonia, as a carbon-neutral fuel, draws people attentions recently. NH3/CH4 blends is considered as a kind of fuel. A numerical simulation of the effects of CO2 dilution on the combustion characteristics and NO emission of NH3/CH4 counterflow diffusion flame was conducted in this study. Diffusion flame structure, the influence of CO2 radiation characteristics on temperature and NO emission characteristics were studies at normal temperature and pressure. The dilution and radiation of CO2 reduce the flame temperature significantly. NO concentration decreased with the CO2 mole fraction increase effectively. The study extends the basic combustion characteristics of NH3 containing fuel.


2021 ◽  
Vol 7 ◽  
Author(s):  
Jiwei Zhou ◽  
Mengxiang Zhou ◽  
Liuhao Ma ◽  
Yu Wang

A cost-effective and straightforward light extinction method has been extensively used for measurement of soot volume fraction (SVF) in sooting flames. The traditional pointwise measurement with translation stage suffers from relatively time-consuming operation and low spatial resolution. In the current study, the planar light extinction method is processed by utilizing a CMOS camera to image the combustion field of counterflow diffusion flame (CDF) backlit with the lamp. Collimated and diffuse optical layouts were adopted to explore the feasibility. Investigations of beam-steering effects are presented and discussed through a combination of computational fluid dynamics (CFD) and ray tracing simulations. Measured SVF are compared to the well-validated laser-induced incandescence (LII) measurements. Current measurements show that the diffuse optical layout is feasible and robust to provide accurate and more efficient measurement of the SVF in CDF with superior spatial resolution (21.65 μm).


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2905
Author(s):  
Ying Chen ◽  
Jingfu Wang ◽  
Xiaolei Zhang ◽  
Conghao Li

The effects (chemical, thermal, transport, and radiative) of CO2 added to the fuel side and oxidizer side on the flame temperature and the position of the flame front in a one-dimensional laminar counterflow diffusion flame of methane/N2/O2 were studied. Overall CO2 resulted in a decrease in flame temperature whether on the fuel side or on the oxidizer side, with the negative effect being more obvious on the latter side. The prominent effects of CO2 on the flame temperature were derived from its thermal properties on the fuel side and its radiative properties on the oxidizer side. The results also highlighted the differences in the four effects of CO2 on the position of the flame front on different sides. In addition, an analysis of OH and H radicals and the heat release rate of the main reactions illustrated how CO2 affects the flame temperature.


2021 ◽  
Vol 11 (4) ◽  
pp. 1768
Author(s):  
Ying Chen ◽  
Jingfu Wang ◽  
Xiaolei Zhang ◽  
Conghao Li

A comprehensive numerical investigation of the uncoupled chemical, thermal, and transport effects of CO2 on the temperature of CH4/O2 counterflow diffusion flame under high pressure up to 5 atm was conducted. Three pairs of artificial species were introduced to distinguish the chemical effect, thermal effect, and the transport effect of CO2 on the flame temperature. The numerical results showed that both the chemical effect and the thermal effect of the CO2 dilution in the oxidizer side can decrease the flame temperature significantly, while the transport effect of CO2 can only slightly increase the flame temperature and can even be ignored. The reduction value of the temperature caused by the chemical effect of CO2 grows linearly, while that caused by the thermal effect increases exponentially. The RPchem and RPthermal are defined to explain the temperature reduction percentage due to the chemical effect and the thermal effect of CO2 in the total temperature reduction caused by CO2 dilution, respectively. The RPchem decreases with the increase of the pressure, the strain rate, and the CO2 dilution ratio, while the RPthermal behaves in the opposite manner. In the above conditions, the chemical effect plays a dominant role on the flame temperature reduction.


2019 ◽  
Vol 206 ◽  
pp. 239-248 ◽  
Author(s):  
Yong Tang ◽  
Marien Simeni Simeni ◽  
Kraig Frederickson ◽  
Qiang Yao ◽  
Igor V. Adamovich

Sign in / Sign up

Export Citation Format

Share Document