scholarly journals A new observational-modeling framework for flash-flood forecasting in complex-terrain watersheds.

2020 ◽  
Author(s):  
Soraya Castillo ◽  
Vanessa Alexandra Lopera Mazo ◽  
Nicolás Velásquez ◽  
Carlos D. Hoyos ◽  
Olver Hernandez ◽  
...  
Author(s):  
C Girard ◽  
T Godfroy ◽  
M Erlich ◽  
E David ◽  
C Sorbet ◽  
...  

Author(s):  
Z. Li ◽  
D. Yang ◽  
Y. Hong ◽  
Y. Qi ◽  
Q. Cao

Abstract. Spatial rainfall pattern plays a critical role in determining hydrological responses in mountainous areas, especially for natural disasters such as flash floods. In this study, to improve the skills of flood forecasting in the mountainous Three Gorges Region (TGR) of the Yangtze River, we developed a first version of a high-resolution (1 km) radar-based quantitative precipitation estimation (QPE) consideration of many critical procedures, such as beam blockage analysis, ground-clutter filter, rain type identification and adaptive Z–R relations. A physically-based distributed hydrological model (GBHM) was established and further applied to evaluate the performance of radar-based QPE for regional flood forecasting, relative to the gauge-driven simulations. With two sets of input data (gauge and radar) collected during summer 2010, the applicability of the current radar-based QPE to rainstorm monitoring and flash flood forecasting in the TGR is quantitatively analysed and discussed.


Sign in / Sign up

Export Citation Format

Share Document