flash flood forecasting
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 15)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 13 (24) ◽  
pp. 5083
Author(s):  
Xuan Tang ◽  
Zhaorui Yin ◽  
Guanghua Qin ◽  
Li Guo ◽  
Hongxia Li

Satellite remote sensing precipitation is useful for many hydrological and meteorological applications such as rainfall-runoff forecasting. However, most studies have focused on the use of satellite precipitation on daily, monthly, or larger time scales. This study focused on flash flood simulation using satellite precipitation products (IMERG) on an hourly scale in a poorly gauged mountainous catchment in southwestern China. Deep learning (long short-term memory, LSTM) was used, merging satellite precipitation and gauge observations, and the merged precipitation data were used as inputs for flood simulation based on the HEC-HMS model, compared with the gauged precipitation data and original IMERG data. The results showed that the application of original IMERG data used directly in the HEC-HMS hydrological model had much lower accuracy than that of gauged data and merged data. The simulation using the merged precipitation in HEC-HMS exhibited much better performances than gauged data. The mean NSE improved from 0.84 to 0.87 for calibration and 0.80 to 0.84 for verification, while the lower NSE improved from 0.81 to 0.84 for calibration and 0.73 to 0.86 for verification, which showed that accuracy and robustness were both significantly improved. Results of this study indicate the advances of remote sensing precipitation with deep learning for flash flood forecasting in mountainous regions. It is likely that more significant improvements can be made in flash flood forecasting by employing multi-source remote sensing products and deep learning merging methods considering the impact of complex terrain.


Author(s):  
Yixin Wen ◽  
Terry Schuur ◽  
Humberto Vergara ◽  
Charles Kuster

AbstractQuantitative precipitation estimates (QPE) at high spatiotemporal resolution are essential for flash flood forecasting, especially in urban environments and headwater areas. An accurate quantification of precipitation is directly related to the temporal and spatial sampling of the precipitation system. The advent of phased array radar (PAR) technology, a potential next-generation weather radar, can provide updates that are at least 4-5 times faster than the conventional WSR-88D scanning rate. In this study, data collected by the KOUN WSR-88D radar with ~1 minute temporal resolution is used as an approximation of data that a future PAR system could provide to force the Ensemble Framework for Flash Flood Forecasting (EF5) hydrologic model. To assess the effect of errors resulting from temporal and spatial sampling of precipitation on flash flood warnings, KOUN precipitation data (1-km/1-min) is used to generate precipitation products at other spatial/temporal resolutions commonly used in hydrologic models, such as those provided by conventional WSR-88D radar (1-km/5-min), spaced-based observations (10-km/30-min), and hourly rainfall products (1-km/60-min). The effect of precipitation sampling errors on flash flood warnings are then examined and quantified by using discharge simulated from KOUN (1-km/1-min) as truth to assess simulations conducted using other generated coarser spatial/temporal resolutions of other precipitation products. Our results show that: 1) observations with coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and distribution of precipitation, 2) time series of precipitation products show that QPE peak values decrease as the temporal resolution gets coarser, and 3) the effect of precipitation sampling error on flash flood forecasting is large in headwater areas and decrease quickly as drainage area increases.


Author(s):  
Petr Janál ◽  
◽  
Tomáš Kozel ◽  

The flash flood forecasting remains one of the most difficult tasks in the operative hydrology worldwide. The torrential rainfalls bring high uncertainty included in both forecasted and measured part of the input rainfall data. The hydrological models must be capable to deal with such amount of uncertainty. The artificial intelligence methods work on the principles of adaptability and could represent a proper solution. The application of different methods, approaches, hydrological models and usage of various input data is necessary. The tool for real-time evaluation of the flash flood occurrence was assembled on the bases of the fuzzy logic. The model covers whole area of the Czech Republic and the nearest surroundings. The domain is divided into 3245 small catchments of the average size of 30 km2. Real flood episodes were used for the calibration and future flood events can be used for recalibration (principle of adaptability). The model consists of two fuzzy inference systems (FIS). The catchment predisposition for the flash flood occurrence is evaluated by the first FIS. The geomorphological characteristics and long-term meteorological statistics serve as the inputs. The second FIS evaluates real-time data. The inputs are: The predisposition for flash flood occurrence (gained from the first FIS), the rainfall intensity, the rainfall duration and the antecedent precipitation index. The meteorological radar measurement and the precipitation nowcasting serve as the precipitation data source. Various precipitation nowcasting methods are considered. The risk of the flash flood occurrence is evaluated for each small catchment every 5 or 10 minutes (the time step depends on the precipitation nowcasting method). The Fuzzy Flash Flood model is implemented in the Czech Hydrometeorological Institute (CHMI) – Brno Regional Office. The results are available for all forecasters at CHMI via web application for testing. The huge uncertainty inherent in the flash flood forecasting causes that fuzzy model outputs based on different nowcasting methods could vary significantly. The storms development is very dynamic and hydrological forecast could change a lot of every 5 minutes. That is why the fuzzy model estimates are intended to be used by experts only. The Fuzzy Flash Flood model is an alternative tool for the flash flood forecasting. It can provide the first hints of danger of flash flood occurrence within the whole territory of the Czech Republic. Its main advantage is very fast calculation and possibility of variant approach using various precipitation nowcasting inputs. However, the system produces large number of false alarms, therefore the long-term testing in operation is necessary and the warning releasing rules must be set.


2020 ◽  
Vol 13 (10) ◽  
pp. 4943-4958
Author(s):  
Zachary L. Flamig ◽  
Humberto Vergara ◽  
Jonathan J. Gourley

Abstract. The Ensemble Framework For Flash Flood Forecasting (EF5) was developed specifically for improving hydrologic predictions to aid in the issuance of flash flood warnings by the US National Weather Service. EF5 features multiple water balance models and two routing schemes which can be used to generate ensemble forecasts of streamflow, streamflow normalized by upstream basin area (i.e., unit streamflow), and soil saturation. EF5 is designed to utilize high-resolution precipitation forcing datasets now available in real time. A study on flash-flood-scale basins was conducted over the conterminous United States using gauged basins with catchment areas less than 1000 km2. The results of the study show that the three uncalibrated water balance models linked to kinematic wave routing are skillful in simulating streamflow.


2020 ◽  
Author(s):  
Zachary L. Flamig ◽  
Humberto Vergara ◽  
Jonathan J. Gourley

Abstract. The Ensemble Framework For Flash Flood Forecasting (EF5) was developed specifically for improving hydrologic predictions to aid in the issuance of flash flood warnings by the U.S. National Weather Service. EF5 features multiple water balance models and two routing schemes which can be used to generate ensemble forecasts of streamflow, streamflow normalized by upstream basin area (i.e., unit streamflow), and soil saturation. EF5 is designed to utilize high resolution precipitation forcing datasets now available in near real time. A study on flash flood scale basins was conducted over the conterminous United States using gauged basins with catchment areas less than 1,000 km2. The results of the study show that the three uncalibrated water balance models linked to kinematic wave routing are skillful in streamflow prediction.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 570 ◽  
Author(s):  
Andre Zanchetta ◽  
Paulin Coulibaly

Recent years have witnessed considerable developments in multiple fields with the potential to enhance our capability of forecasting pluvial flash floods, one of the most costly environmental hazards in terms of both property damage and loss of life. This work provides a summary and description of recent advances related to insights on atmospheric conditions that precede extreme rainfall events, to the development of monitoring systems of relevant hydrometeorological parameters, and to the operational adoption of weather and hydrological models towards the prediction of flash floods. With the exponential increase of available data and computational power, most of the efforts are being directed towards the improvement of multi-source data blending and assimilation techniques, as well as assembling approaches for uncertainty estimation. For urban environments, in which the need for high-resolution simulations demands computationally expensive systems, query-based approaches have been explored for the timely retrieval of pre-simulated flood inundation forecasts. Within the concept of the Internet of Things, the extensive deployment of low-cost sensors opens opportunities from the perspective of denser monitoring capabilities. However, different environmental conditions and uneven distribution of data and resources usually leads to the adoption of site-specific solutions for flash flood forecasting in the context of early warning systems.


2020 ◽  
Author(s):  
Soraya Castillo ◽  
Vanessa Alexandra Lopera Mazo ◽  
Nicolás Velásquez ◽  
Carlos D. Hoyos ◽  
Olver Hernandez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document