scholarly journals Variation of Solar Wind Parameters and Total Electron Content from Indian, Australian, Brazilian and South African Sectors during the Intense Geomagnetic Storms

2020 ◽  
Author(s):  
Binod ADHIKARI ◽  
Roshan Kumar Mishra ◽  
Narayan P. Chapagain ◽  
Rabin Baral ◽  
Priyanka Kumari Das ◽  
...  
Radio Science ◽  
2020 ◽  
Vol 55 (11) ◽  
Author(s):  
Roshan Kumar Mishra ◽  
Binod Adhikari ◽  
Narayan Prasad Chapagain ◽  
Rabin Baral ◽  
Priyanka Kumari Das ◽  
...  

2017 ◽  
Vol 35 (6) ◽  
pp. 1309-1326 ◽  
Author(s):  
Patricia Mara de Siqueira Negreti ◽  
Eurico Rodrigues de Paula ◽  
Claudia Maria Nicoli Candido

Abstract. Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O ∕ N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from  ∼  25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and considering the events studied here, this was the most important source of ionospheric responses. Furthermore, the most important source of TEC changes were the long-lasting PPEFs observed on August 2013, during the HILDCAA event. The importance of this study relies on the peculiarity of the region analyzed characterized by high declination angle and ionospheric gradients which are responsible for creating a complex response during disturbed periods.


2020 ◽  
Author(s):  
Nicolas Bergeot ◽  
John Bosco Habarulema ◽  
Jean-Marie Chevalier ◽  
Tshimangadzo Matamba ◽  
Elisa Pinat ◽  
...  

<p>An increasing demand for a better modelling and understanding of the Ionosphere-Plasmasphere system (I/Ps) is required for both scientific and public practical applications using electromagnetic wave signals reflecting on or passing through this layer. This is the case for the Global Navigation Satellite Systems (GNSS, i.e. GPS, GLONASS, Galileo) and for spacecraft designers and operators who need to have a precise knowledge of the electron density distribution.</p><p>Additionally, despite the long-term ionospheric studies that have been on-going for many decades, a number of aspects are still complicated to understand and forecast accurately even in mid-latitude regions during quiet conditions. Performing inter-hemispherical climatological studies in European and South African regions should highlight differences/similarities in I/Ps response during different phases of solar activity and geophysical conditions.</p><p>In that frame, the Royal Observatory of Belgium (ROB) and the South African National Space Agency (SANSA) started a collaboration named “Interhemispheric Comparison of the Ionosphere-Plasmasphere System” (BEZA-COM). The goal is to provide inter-hemispheric comparison of the I/Ps implying: (1) a characterization of the climatological behavior of the Total Electron Content (TEC) in the I/Ps, over European, South African, Arctic and Antarctica regions; (2) an identification of the mechanisms that regulate inter-hemispheric differences, asymmetries and commonalities in the I/Ps from low to high-latitudes, (3) study of the different responses of the I/Ps during extreme solar events and induced geomagnetic storms in the two hemispheres.</p><p>In this paper, we reprocessed the GNSS data (GPS+GLONASS) of the dense EUREF Permanent GNSS Network (EPN) and South African TRIGNET networks as well as IGS stations for the period 1998-2018. The output consists in vertical Total Electron Content (vTEC), estimated every 15 min., and covering the central European and South African regions. The vTEC is then extracted at two conjugated locations and used to constrain empirical models to highlight the climatological behavior of the ionospheric vTEC over Europe and South Africa. From the results, we will show that the differences are quite significant. To give first answers on these differences, we also compared these models with ionosondes long-term data based models (for foF2 and hmF2) at two conjugated locations (Grahamstown and Průhonice) as well as long-term NRLMSISE O/N<sub>2</sub> ratio.</p>


2019 ◽  
Author(s):  
Regia Pereira Silva ◽  
Clezio Marcos Denardini ◽  
Manilo Soares Marques ◽  
Laysa Cristina Araújo Resende ◽  
Juliano Moro ◽  
...  

Abstract. The High-Intensity Long-Duration and Continuous AE Activities (HILDCAA) intervals are capable of causing a global disturbance in the terrestrial ionosphere. However, the ionospheric storms' behavior due to these geomagnetic activity forms is still not widely understood. In this study, we seek to comprise the HILDCAAs disturbance time effects in the Total Electron Content (TEC) values with respect to the quiet days' pattern analyzing local time and seasonal dependences, and the influences of the solar wind velocity to a sample of ten intervals occurred in 2015 and 2016 years. The main results showed that the hourly distribution of the disturbance TEC may vary substantially between one interval and another. Doing a comparative to geomagnetic storms, while the positive ionospheric storms are more pronounced in the winter, this season presents less geoeffectiveness or almost none to HILDCAA intervals. It was find an equinoctial anomaly, since the equinoxes represent more ionospheric TEC responses during HILDCAA intervals than the solstices. Regarding to the solar wind velocities, although HILDCAA intervals are associated to High Speed Streams, this association does not present a direct relation regards to TEC disturbances in low and equatorial latitudes.


2019 ◽  
Vol 5 (1) ◽  
pp. 59-66
Author(s):  
B. B. Rana ◽  
N. P. Chapagain ◽  
B. Adhikari ◽  
D. Pandit ◽  
K. Pudasainee ◽  
...  

Total Electron Content (TEC) and electron density profile are the key parameters in the mitigation of ionospheric effects on radio wave communication system. In this study, the variations of TEC and electron density profile have been analyzed using satellite data from four different latitude-longitude sectors (13°N -17°N, 88°E - 98°E), (30°N - 50°N, 95°W - 120°W), (26°S - 29°S, 163°W - 167°W,) and (45°S - 60°S, 105°W-120°W) during different geomagnetic storms. The interplanetary magnetic field (Bz), solar wind velocity (Vsw), solar wind pressure (Psw) and geomagnetic indices, aurora index -AE, Kp and disturbed stormed time index (Dst) are also analyzed to distinguish their effects on TEC and electron density. The geomagnetic indices and solar wind parameters are correlated with the TEC and electron density. The study showed that the value of TEC and electron density vary significantly with different latitude, longitude, altitude and solar activities. The result also concludes that the electron density profile increases with the altitude, acquired peak value around 250km-300km and decreased beyond the altitude of 300 km.


2020 ◽  
Vol 10 ◽  
pp. 11 ◽  
Author(s):  
Claudio Cesaroni ◽  
Luca Spogli ◽  
Angela Aragon-Angel ◽  
Michele Fiocca ◽  
Varuliator Dear ◽  
...  

We introduce a novel empirical model to forecast, 24 h in advance, the Total Electron Content (TEC) at global scale. The technique leverages on the Global Ionospheric Map (GIM), provided by the International GNSS Service (IGS), and applies a nonlinear autoregressive neural network with external input (NARX) to selected GIM grid points for the 24 h single-point TEC forecasting, taking into account the actual and forecasted geomagnetic conditions. To extend the forecasting at a global scale, the technique makes use of the NeQuick2 Model fed by an effective sunspot number R12 (R12eff), estimated by minimizing the root mean square error (RMSE) between NARX output and NeQuick2 applied at the same GIM grid points. The novel approach is able to reproduce the features of the ionosphere especially during disturbed periods. The performance of the forecasting approach is extensively tested under different geospatial conditions, against both TEC maps products by UPC (Universitat Politècnica de Catalunya) and independent TEC data from Jason-3 spacecraft. The testing results are very satisfactory in terms of RMSE, as it has been found to range between 3 and 5 TECu. RMSE depend on the latitude sectors, time of the day, geomagnetic conditions, and provide a statistical estimation of the accuracy of the 24-h forecasting technique even over the oceans. The validation of the forecasting during five geomagnetic storms reveals that the model performance is not deteriorated during disturbed periods. This 24-h empirical approach is currently implemented on the Ionosphere Prediction Service (IPS), a prototype platform to support different classes of GNSS users.


2020 ◽  
Vol 38 (1) ◽  
pp. 27-34
Author(s):  
Regia Pereira da Silva ◽  
Clezio Marcos Denardini ◽  
Manilo Soares Marques ◽  
Laysa Cristina Araujo Resende ◽  
Juliano Moro ◽  
...  

Abstract. The High-Intensity Long-Duration and Continuous AE Activities (HILDCAA) intervals are capable of causing a global disturbance in the terrestrial ionosphere. However, the ionospheric storms' behavior due to these intervals is still not widely understood. In the current study, we seek to comprise the HILDCAA disturbance time effects in the total electron content (TEC) values with respect to the quiet days' pattern by analyzing local time and seasonal dependences, and the influences of the solar wind velocity on a sample of 10 intervals that occurred in the years 2015 and 2016. The main results showed that the hourly distribution of the disturbance TEC may vary substantially between one HILDCAA interval and another. An equinoctial anomaly was found since the equinoxes represent more ionospheric TEC responses than the solstices. Regarding the solar wind velocities, although HILDCAA intervals are associated with high-speed streams, this association does not present a direct relation to TEC disturbance magnitudes at low and equatorial latitudes.


Sign in / Sign up

Export Citation Format

Share Document