scholarly journals Ionospheric Total Electron Content responses to HILDCAAs intervals

2019 ◽  
Author(s):  
Regia Pereira Silva ◽  
Clezio Marcos Denardini ◽  
Manilo Soares Marques ◽  
Laysa Cristina Araújo Resende ◽  
Juliano Moro ◽  
...  

Abstract. The High-Intensity Long-Duration and Continuous AE Activities (HILDCAA) intervals are capable of causing a global disturbance in the terrestrial ionosphere. However, the ionospheric storms' behavior due to these geomagnetic activity forms is still not widely understood. In this study, we seek to comprise the HILDCAAs disturbance time effects in the Total Electron Content (TEC) values with respect to the quiet days' pattern analyzing local time and seasonal dependences, and the influences of the solar wind velocity to a sample of ten intervals occurred in 2015 and 2016 years. The main results showed that the hourly distribution of the disturbance TEC may vary substantially between one interval and another. Doing a comparative to geomagnetic storms, while the positive ionospheric storms are more pronounced in the winter, this season presents less geoeffectiveness or almost none to HILDCAA intervals. It was find an equinoctial anomaly, since the equinoxes represent more ionospheric TEC responses during HILDCAA intervals than the solstices. Regarding to the solar wind velocities, although HILDCAA intervals are associated to High Speed Streams, this association does not present a direct relation regards to TEC disturbances in low and equatorial latitudes.

2020 ◽  
Vol 38 (1) ◽  
pp. 27-34
Author(s):  
Regia Pereira da Silva ◽  
Clezio Marcos Denardini ◽  
Manilo Soares Marques ◽  
Laysa Cristina Araujo Resende ◽  
Juliano Moro ◽  
...  

Abstract. The High-Intensity Long-Duration and Continuous AE Activities (HILDCAA) intervals are capable of causing a global disturbance in the terrestrial ionosphere. However, the ionospheric storms' behavior due to these intervals is still not widely understood. In the current study, we seek to comprise the HILDCAA disturbance time effects in the total electron content (TEC) values with respect to the quiet days' pattern by analyzing local time and seasonal dependences, and the influences of the solar wind velocity on a sample of 10 intervals that occurred in the years 2015 and 2016. The main results showed that the hourly distribution of the disturbance TEC may vary substantially between one HILDCAA interval and another. An equinoctial anomaly was found since the equinoxes represent more ionospheric TEC responses than the solstices. Regarding the solar wind velocities, although HILDCAA intervals are associated with high-speed streams, this association does not present a direct relation to TEC disturbance magnitudes at low and equatorial latitudes.


2017 ◽  
Vol 35 (6) ◽  
pp. 1309-1326 ◽  
Author(s):  
Patricia Mara de Siqueira Negreti ◽  
Eurico Rodrigues de Paula ◽  
Claudia Maria Nicoli Candido

Abstract. Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O ∕ N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from  ∼  25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and considering the events studied here, this was the most important source of ionospheric responses. Furthermore, the most important source of TEC changes were the long-lasting PPEFs observed on August 2013, during the HILDCAA event. The importance of this study relies on the peculiarity of the region analyzed characterized by high declination angle and ionospheric gradients which are responsible for creating a complex response during disturbed periods.


Radio Science ◽  
2020 ◽  
Vol 55 (11) ◽  
Author(s):  
Roshan Kumar Mishra ◽  
Binod Adhikari ◽  
Narayan Prasad Chapagain ◽  
Rabin Baral ◽  
Priyanka Kumari Das ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 540 ◽  
Author(s):  
Hui Xi ◽  
Hu Jiang ◽  
Jiachun An ◽  
Zemin Wang ◽  
Xueyong Xu ◽  
...  

It is of great significance for the global navigation satellite system (GNSS) service to detect the polar ionospheric total electron content (TEC) and its variations, particularly under disturbed ionosphere conditions, including different phases of solar activity, the polar day and night alternation, the Weddell Sea anomaly (WSA) as well as geomagnetic storms. In this paper, four different models are utilized to map the ionospheric TEC over the Arctic and Antarctic for about one solar cycle: the polynomial (POLY) model, the generalized trigonometric series function (GTSF) model, the spherical harmonic (SH) model, and the spherical cap harmonic (SCH) model. Compared to other models, the SCH model has the best performance with ±0.8 TECU of residual mean value and 1.5–3.5 TECU of root mean square error. The spatiotemporal distributions and variations of the polar ionospheric TEC are investigated and compared under different ionosphere conditions in the Arctic and Antarctic. The results show that the solar activity significantly affects the TEC variations. During polar days, the ionospheric TEC is more active than it is during polar nights. In polar days over the Antarctic, the maximum value of TEC always appears at night in the Antarctic Peninsula and Weddell Sea area affected by the WSA. In the same year, the ionospheric TEC of the Antarctic has a larger amplitude of annual variation than that of the TEC in the Arctic. In addition, the evolution of the ionization patch during a geomagnetic storm over the Antarctic can be clearly tracked employing the SCH model, which appears to be adequate for mapping the polar TEC, and provides a sound basis for further automatic identification of ionization patches.


Author(s):  
Rohaida Mat Akir ◽  
Siti Aminah Bahari ◽  
Mardina Abdullah ◽  
Mariyam Jamilah Homam ◽  
Kalaivani Chellapan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document