scholarly journals Baseline vector repeatability at the sub-millimeter level enabled by radio interferometer phase delays of intra-site baselines

2021 ◽  
Author(s):  
Ming H Xu ◽  
Tuomas Savolainen ◽  
Sergei Bolotin ◽  
Simone Bernhart ◽  
Christian Plötz ◽  
...  
2018 ◽  
pp. 51-54
Author(s):  
I. E. Arsaev ◽  
Yu. V. Vekshin ◽  
A. I. Lapshin ◽  
V. V. Mardyshkin ◽  
M. V. Sargsyan ◽  
...  

2019 ◽  
Vol 81 (1) ◽  
pp. 118-128
Author(s):  
V. V. Balandin ◽  
V. V. Balandin ◽  
V. V. Parkhachev

Investigating impact interaction of solid and deformed bodies with obstacles of various physical natures requires developing experimental methodologies of registering the parameters of the interaction process. In experimental investigations of impact interaction of solids, it is common practice to measure displacement of strikers as a function of time, as well as their velocity and deceleration. To determine the displacement and velocity of a striker, a radio-interferometric methodology of registering the displacement of its rear end is proposed. In contrast with the registration methods based on high-speed filming and pulsed X-ray photography, the method using a millimeter-range radio-interferometer provides continuous high-accuracy registering of the displacement of the rear end of a striker in a wide range of displacement values. To test the effectiveness of the methodology, a series of experiments have been conducted on registering the motion of a cylindrical striker of an aluminum alloy, fired from a 20mm-dia gas gun. The displacement of the striker was also monitored using high-speed filming. The results of measuring using the two methodologies differ within the limits of the error of measurement. Based on the results of the above experiments, it has been concluded that the methodology of determining the displacement and velocity of strikers in a ballistic experiment using a mm-range radio-interferometer makes it possible to measure practically continuously large displacements (100 mm and larger) to a safe accuracy. The present methodology can be used for measuring the displacement and velocity of the rear end of a striker interacting with obstacles of various physical natures (metals, ceramics, soils, concretes, etc.).


Sign in / Sign up

Export Citation Format

Share Document