Modeling radiation belt electrons with information theory informed neural network

2021 ◽  
Author(s):  
Simon Wing ◽  
Drew L. Turner ◽  
Aleksandr Y Ukhorskiy ◽  
Jay Robert Johnson ◽  
Thomas Sotirelis ◽  
...  
2020 ◽  
Author(s):  
Yingjie Guo ◽  
Binbin Ni ◽  
Dedong Wang ◽  
Yuri Shprits ◽  
Song Fu ◽  
...  

<p>The evolution of chorus waves is important in the inner magnetosphere since it is closely related to the loss and acceleration of radiation belt electrons. In this study, we develop neural-network-based models for upper-band chorus (UBC; 0.5 f<sub>ce </sub>< f <  f<sub>ce </sub>) waves and lower-band chorus (LBC; 0.05 f<sub>ce </sub>< f < 0.5 f<sub>ce</sub>) waves, where f<sub>ce</sub> is the equatorial electron gyrofrequency. We establish a root-mean-square amplitude database for both UBC and LBC using Van Allen Probe levels 2 and 3 data products from the EMFISIS payload between October 1, 2012 and January 14, 2018. Based on the database, we construct an artificial neural network with corresponding L, magnetic local time, magnetic latitude, solar wind parameters and geomagnetic indices on different time windows as model inputs. Additionally, we adopt several different feature selection techniques to determine the most important features of magnetospheric chorus waves, reduce training or running time and improve the model accuracy. Our study suggests that the model results using the machine learning technique have the great potential to highly improve current understanding of the radiation belt dynamics.</p>


2011 ◽  
Vol 73 (7-8) ◽  
pp. 785-795 ◽  
Author(s):  
Qiuhua Zheng ◽  
Mei-Ching Fok ◽  
Jay Albert ◽  
Richard B. Horne ◽  
Nigel P. Meredith

2016 ◽  
Vol 34 (5) ◽  
pp. 493-509 ◽  
Author(s):  
Zheng Xiang ◽  
Binbin Ni ◽  
Chen Zhou ◽  
Zhengyang Zou ◽  
Xudong Gu ◽  
...  

<p><strong>Abstract.</strong> Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. Using electron flux data from a group of 14 satellites, we report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse. When the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at <i>L</i> ≳ 5, owing to the magnetopause intrusion into <i>L</i> ∼ 6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. It is demonstrated that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.</p>


2021 ◽  
Author(s):  
Qiugang Zong

Abstract. Solar wind forcing, e.g. interplanetary shock and/or solar wind dynamic pressure pulses impact on the Earth’s magnetosphere manifests many fundamental important space physics phenomena including producing electromagnetic waves, plasma heating and energetic particle acceleration. This paper summarizes our present understanding of the magnetospheric response to solar wind forcing in the aspects of radiation belt electrons, ring current ions and plasmaspheric plasma physics based on in situ spacecraft measurements, ground-based magnetometer data, MHD and kinetic simulations. Magnetosphere response to solar wind forcing, is not just a “one-kick” scenario. It is found that after the impact of solar wind forcing on the Earth’s magnetosphere, plasma heating and energetic particle acceleration started nearly immediately and could last for a few hours. Even a small dynamic pressure change of interplanetary shock or solar wind pressure pulse can play a non-negligible role in magnetospheric physics. The impact leads to generate series kind of waves including poloidal mode ultra-low frequency (ULF) waves. The fast acceleration of energetic electrons in the radiation belt and energetic ions in the ring current region response to the impact usually contains two contributing steps: (1) the initial adiabatic acceleration due to the magnetospheric compression; (2) followed by the wave-particle resonant acceleration dominated by global or localized poloidal ULF waves excited at various L-shells. Generalized theory of drift and drift-bounce resonance with growth or decay localized ULF waves has been developed to explain in situ spacecraft observations. The wave related observational features like distorted energy spectrum, boomerang and fishbone pitch angle distributions of radiation belt electrons, ring current ions and plasmaspheric plasma can be explained in the frame work of this generalized theory. It is worthy to point out here that poloidal ULF waves are much more efficient to accelerate and modulate electrons (fundamental mode) in the radiation belt and charged ions (second harmonic) in the ring current region. The results presented in this paper can be widely used in solar wind interacting with other planets such as Mercury, Jupiter, Saturn, Uranus and Neptune, and other astrophysical objects with magnetic fields.


2013 ◽  
Vol 118 (7) ◽  
pp. 4391-4399 ◽  
Author(s):  
Zhigang Yuan ◽  
Ming Li ◽  
Ying Xiong ◽  
Haimeng Li ◽  
Meng Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document