scholarly journals Improved Automated Building Extraction from High Resolution Remote Sensing Imagery using Time-optimized Deep Learning Techniques

2021 ◽  
Author(s):  
Chintan Maniyar ◽  
Minakshi Kumar
Author(s):  
Yongtao Yu ◽  
Chao Liu ◽  
Junyong Gao ◽  
Shenghua Jin ◽  
Xiaoling Jiang ◽  
...  

2018 ◽  
Vol 10 (9) ◽  
pp. 1461 ◽  
Author(s):  
Yongyang Xu ◽  
Zhong Xie ◽  
Yaxing Feng ◽  
Zhanlong Chen

The road network plays an important role in the modern traffic system; as development occurs, the road structure changes frequently. Owing to the advancements in the field of high-resolution remote sensing, and the success of semantic segmentation success using deep learning in computer version, extracting the road network from high-resolution remote sensing imagery is becoming increasingly popular, and has become a new tool to update the geospatial database. Considering that the training dataset of the deep convolutional neural network will be clipped to a fixed size, which lead to the roads run through each sample, and that different kinds of road types have different widths, this work provides a segmentation model that was designed based on densely connected convolutional networks (DenseNet) and introduces the local and global attention units. The aim of this work is to propose a novel road extraction method that can efficiently extract the road network from remote sensing imagery with local and global information. A dataset from Google Earth was used to validate the method, and experiments showed that the proposed deep convolutional neural network can extract the road network accurately and effectively. This method also achieves a harmonic mean of precision and recall higher than other machine learning and deep learning methods.


2021 ◽  
Vol 13 (19) ◽  
pp. 3814
Author(s):  
Fang Fang ◽  
Kaishun Wu ◽  
Yuanyuan Liu ◽  
Shengwen Li ◽  
Bo Wan ◽  
...  

Building instances extraction is an essential task for surveying and mapping. Challenges still exist in extracting building instances from high-resolution remote sensing imagery mainly because of complex structures, variety of scales, and interconnected buildings. This study proposes a coarse-to-fine contour optimization network to improve the performance of building instance extraction. Specifically, the network contains two special sub-networks: attention-based feature pyramid sub-network (AFPN) and coarse-to-fine contour sub-network. The former sub-network introduces channel attention into each layer of the original feature pyramid network (FPN) to improve the identification of small buildings, and the latter is designed to accurately extract building contours via two cascaded contour optimization learning. Furthermore, the whole network is jointly optimized by multiple losses, that is, a contour loss, a classification loss, a box regression loss and a general mask loss. Experimental results on three challenging building extraction datasets demonstrated that the proposed method outperformed the state-of-the-art methods’ accuracy and quality of building contours.


Sign in / Sign up

Export Citation Format

Share Document