Multi‐objective optimization model for distribution network reconfiguration in the presence of distributed generations

Author(s):  
Milad Zarei ◽  
Ali Zangeneh
Author(s):  
Yashar Mousavi ◽  
Mohammad Hosein Atazadegan ◽  
Arash Mousavi

Optimization of power distribution system reconfiguration is addressed as a multi-objective problem, which considers the system losses along with other objectives, and provides a viable solution for improvement of technical and economic aspects of distribution systems. A multi-objective chaotic fractional particle swarm optimization customized for power distribution network reconfiguration has been applied to reduce active power loss, improve the voltage profile, and increase the load balance in the system through deterministic and stochastic structures. In order to consider the prediction error of active and reactive loads in the network, it is assumed that the load behaviour follows the normal distribution function. An attempt is made to consider the load forecasting error on the network to reach the optimal point for the network in accordance with the reality. The efficiency and feasibility of the proposed method is studied through standard IEEE 33-bus and 69-bus systems. In comparison with other methods, the proposed method demonstrated superior performance by reducing the voltage deviation and power losses. It also achieved better load balancing.


2020 ◽  
Vol 12 (2) ◽  
pp. 57-71
Author(s):  
Ramadoni Syahputra ◽  
Indah Soesanti

This study proposes a multi-objective optimization for power distribution network reconfiguration by integrating distributed generators using an artificial immune system (AIS) method. The most effective and inexpensive technique in reducing power losses in distribution networks is optimizing the network reconfiguration. On the other hand, small to medium scale renewable energy power plant applications are growing rapidly. These power plants are operated on-grid to a distribution network, known as distributed generation (DG). The presence of DG in this distribution network poses new challenges in distribution network operations. In this study, the distribution network optimization was carried out using the AIS method. In optimization, the goal to be achieved is not only one objective but should be multiple objectives. Multi-objective optimization aims to reduce power losses, improve the voltage profile, and maintain a maintained network load balance. The AIS method has the advantage of fast convergence and avoids local minima. To test the superiority of the AIS method, the distribution network optimization with and without DG integration was carried out for the 33-bus and 71-bus models of the IEEE standard distribution networks. The results show that the AIS method can produce better system operating conditions than before the optimization. The parameters for the success of the optimization are minimal active power losses, suitable voltage profiles, and maintained load balance. This optimization has successfully increased the efficiency of the distribution network by an average of 0.61%.


Sign in / Sign up

Export Citation Format

Share Document