scholarly journals Optimisasi Multi-objektif pada Rekonfigurasi Jaringan Distribusi Tenaga Listrik dengan Integrasi Pembangkit Terdistribusi Menggunakan Metode Sistem Kekebalan Buatan

2020 ◽  
Vol 12 (2) ◽  
pp. 57-71
Author(s):  
Ramadoni Syahputra ◽  
Indah Soesanti

This study proposes a multi-objective optimization for power distribution network reconfiguration by integrating distributed generators using an artificial immune system (AIS) method. The most effective and inexpensive technique in reducing power losses in distribution networks is optimizing the network reconfiguration. On the other hand, small to medium scale renewable energy power plant applications are growing rapidly. These power plants are operated on-grid to a distribution network, known as distributed generation (DG). The presence of DG in this distribution network poses new challenges in distribution network operations. In this study, the distribution network optimization was carried out using the AIS method. In optimization, the goal to be achieved is not only one objective but should be multiple objectives. Multi-objective optimization aims to reduce power losses, improve the voltage profile, and maintain a maintained network load balance. The AIS method has the advantage of fast convergence and avoids local minima. To test the superiority of the AIS method, the distribution network optimization with and without DG integration was carried out for the 33-bus and 71-bus models of the IEEE standard distribution networks. The results show that the AIS method can produce better system operating conditions than before the optimization. The parameters for the success of the optimization are minimal active power losses, suitable voltage profiles, and maintained load balance. This optimization has successfully increased the efficiency of the distribution network by an average of 0.61%.

2019 ◽  
Vol 9 (20) ◽  
pp. 4395 ◽  
Author(s):  
Weisheng Liu ◽  
Jian Wu ◽  
Fei Wang ◽  
Yixin Huang ◽  
Qiongdan Dai ◽  
...  

The increasing penetration of distributed generation (DG) brings about great fluctuation and uncertainty in distribution networks. In order to improve the ability of distribution networks to cope with disturbances caused by uncertainties and to evaluate the maximum accommodation capacity of DG, a multi-objective programming method for evaluation of the accommodation capacity of distribution networks for DG is proposed, considering the flexibility of distribution networks in this paper. Firstly, a multi-objective optimization model for determining the maximum accommodation of DG by considering the flexibility of distribution networks is constructed, aiming at maximizing the daily energy consumption, minimizing the voltage amplitude deviation, and maximizing the line capacity margin. Secondly, the comprehensive learning particle swarm optimization (CLPSO) algorithm is used to solve the multi-objective optimization model. Then, the mixed strategy Nash equilibrium is introduced to obtain the frontier solution with the optimal joint equilibrium value in the Pareto solution set. Finally, the effectiveness of the proposed method is demonstrated with an actual distribution network in China. The simulation results show that the proposed planning method can effectively find the Pareto optimal solution set by considering multiple objectives, and can obtain the optimal equilibrium solution for DG accommodation capacity and distribution network flexibility.


2021 ◽  
Vol 5 (6) ◽  
pp. 802-823
Author(s):  
Ramadoni Syahputra ◽  
Indah Soesanti

This paper proposes distribution network optimization with scattered generator integration using the immune-clonal selection (ICS) method. Nowadays, the high popularity of scattered generators (SG) has made distribution networks essential to manage appropriately. This interest is because SG is usually injected into the distribution network due to the ease of accessing the network and the voltage level of the distribution network, which is easier for SG to reach. However, the presence of SG as a distribution network is increasingly dynamic, so that appropriate techniques are needed to achieve adequate network performance through network optimization. The ICS method is expected to be the right solution for this task. The ICS technique was chosen for its excellence in accurately optimizing for multi-objectives while avoiding premature convergence to local minima. The ICS approach was applied to IEEE model distribution networks of 33-bus and 71-bus. The optimization results show that the effectiveness and superiority of the ICS method, which is indicated by shallow power losses with a better voltage profile, and the load balance on each feeder is maintained. Doi: 10.28991/esj-2021-01312 Full Text: PDF


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 326
Author(s):  
Muhammad Omer Khan ◽  
Abdul Wadood ◽  
Muhammad Irfan Abid ◽  
Tahir Khurshaid ◽  
Sang Bong Rhee

The Alternating Current-Direct Current (AC-DC) hybrid distribution network has received attention in recent years. Due to advancement in technologies such as the integration of renewable energy resources of DC–type output and usage of DC loads in the distribution network, the modern distribution system can meet the increasing energy demand with improved efficiency. In this paper, a new AC-DC hybrid distribution network architecture is analyzed that considers distributed energy resources (DER) in the network. A network reconfiguration scheme is proposed that uses the AC soft open point (AC-SOP) and the DC soft open point (DC-SOP) along with an SOP selection algorithm for minimizing the network power losses. Subsequently, the real-time data for DER and load/demand variation are considered for a day-a-head scenario for the verification of the effectiveness of the network reconfiguration scheme. The results show that the proposed network reconfiguration scheme using AC-SOP and DC-SOP can successfully minimize the network power losses by modifying the network configuration. Finally, the effectiveness of the proposed scheme in minimizing the network power losses by the upgraded network configuration is verified by constructing an AC-DC hybrid distribution network by combining two IEEE 33-bus distribution networks.


2021 ◽  
Vol 11 (19) ◽  
pp. 8916
Author(s):  
Zhiwen Xu ◽  
Changsong Chen ◽  
Mingyang Dong ◽  
Jingyue Zhang ◽  
Dongtong Han ◽  
...  

By constructing a DC multi-microgrid system (MMGS) including renewable energy sources (RESs) and electric vehicles (EVs) to coordinate with the distribution network, the utilization rate of RESs can be effectively improved and carbon emissions can be reduced. To improve the economy of MMGS and reduce the network loss of the distribution network, a cooperative double-loop optimization strategy is proposed. The inner-loop economic dispatching reduces the daily operating cost of MMGS by optimizing the active power output of RESs, EVs, and DC/AC converters in MMGS. The outer-loop reactive power optimization reduces the network loss of the distribution network by optimizing the reactive power of the bidirectional DC/AC converters. The double-loop, which synergistically optimizes the economic cost and carbon emissions of MMGS, not only improves the economy of MMGS and operational effectiveness of the distribution network but also realizes the low-carbon emissions. The Across-time-and-space energy transmission (ATSET) of the EVs is considered, whose impact on economic dispatching is analyzed. Particle Swarm Optimization (PSO) is applied to iterative solutions. Finally, the rationality and feasibility of the cooperative multi-objective optimization model are proved by a revised IEEE 33-node system.


Author(s):  
Aamir Ali ◽  
M. Usman Keerio ◽  
Noor Hussain Mugheri ◽  
Munawar Ayaz Memon ◽  
Erum Pathan

Distributed Generation (DG) allocation in distribution network is an optimal choice in maximizing benefits and reducing power losses. In this paper, self-adaptive differential evolution (SaDE), an optimization approach, is used for optimal site and capacity of DG. Different types of DGs such as solar PV and wind turbine (WT) at constant and near unity power factor are integrated into the distribution system. For validation of the proposed algorithm, IEEE 33-bus, 69-bus and 119-bus radial distribution networks are considered. The results show that the proposed algorithm has the ability to find global minimum value of objective function along with the appropriate site and capacity of solar PV and WT type DG. Moreover, the results of proposed method are compared with other existing techniques in order to show its effectiveness. The comparison shows that the proposed technique has the ability to get the lowest power losses with the smallest DG size. Thus, the proposed technique has the ability to find an optimal decision vector that makes it suitable for real-time applications.


Author(s):  
Aamir Ali ◽  
M. Usman Keerio ◽  
Noor Hussain Mugheri ◽  
Munawar Ayaz Memon ◽  
Erum Pathan

Distributed Generation (DG) allocation in distribution network is an optimal choice in maximizing benefits and reducing power losses. In this paper, self-adaptive differential evolution (SaDE), an optimization approach, is used for optimal site and capacity of DG. Different types of DGs such as solar PV and wind turbine (WT) at constant and near unity power factor are integrated into the distribution system. For validation of the proposed algorithm, IEEE 33-bus, 69-bus and 119-bus radial distribution networks are considered. The results show that the proposed algorithm has the ability to find global minimum value of objective function along with the appropriate site and capacity of solar PV and WT type DG. Moreover, the results of proposed method are compared with other existing techniques in order to show its effectiveness. The comparison shows that the proposed technique has the ability to get the lowest power losses with the smallest DG size. Thus, the proposed technique has the ability to find an optimal decision vector that makes it suitable for real-time applications.


2011 ◽  
Vol 403-408 ◽  
pp. 2874-2877
Author(s):  
Ai Long Fan ◽  
Da Lu Guan ◽  
Ping Hao

Distribution network reconfiguration is a non-linear combinatorial optimization problem. It is defined as altering the topological structures of the power system by changing the open/closed states of the sectionalizing and tie switches.The aim is to reduce the power loss, and eliminate the overload of the lines, and improve the power quality, and restore the power supply to non-fault area in the distribution network and so on. Combined with distribution networks, The paper proposed an improved ant colony algorithm under the normal operating conditions to solve the distribution network reconfiguration problem. To demonstrate the validity and effectiveness of the proposed method, an example system is studied.The results on IEEE 71-bus distribution networks are also given,which reveal that the proposed method is feasible and effective.


2016 ◽  
Vol 25 (04) ◽  
pp. 1650025 ◽  
Author(s):  
Mohammad Reza Jannati Oskuee ◽  
Elnaz Babazadeh ◽  
Sajad Najafi-Ravadanegh ◽  
Jafar Pourmahmoud

The regards to widespread impact of distribution networks and ever increasing demand for electricity, some strategies must be devized in order to well operate the distribution networks. In this paper, to enhance the accountability of the power system and to improve the system performance parameters, simultaneous placement of renewable energy generation (REG) sources (e.g., wind, solar and dispatchable distributed generators (DGs)) and capacitors are investigated in a modified radial distribution network with considering ZIP loads. To enhance all network parameters simultaneously to the best possible condition multi-objective functions are proposed and solved using non-dominated sorting genetic algorithm (NSGA II). The employed objectives contain all economical, environmental and technical aspects of distribution network. One of the most important advantages of the proposed multi-objective formulation is that it obtains non-dominated solutions allowing the system operator (decision maker) to exercise his/her personal preference in selecting each of those solutions based on the operating conditions of the system and the costs. It is clear that the implementation of each non-dominated solution needs related costs according to the technology used and the system performance characteristics. However, there is a paucity of objective methodologies for ranking the obtained non-dominated solutions considering economical, environmental and technical aspects. So, in this paper, data envelopment analysis (DEA) is suggested for this purpose. In other words, in this paper, first NSGA II is applied to the siting and sizing problem, and then the obtained non-dominated solutions are prioritized by DEA. The significant advantage of using DEA is that there is no need to impose the decision maker’s idea into the model and ranking is done based on the efficiencies of the non-dominated solutions. The most efficient solution is the one which has improved network parameters considerably and has lowest costs. So, using DEA gives a realistic view of solutions and the provided results are for all, not for a specific decision maker. To validate the effectiveness of the proposed scheme, the simulations are carried out on a modified test case 33-bus radial distribution network.


Sign in / Sign up

Export Citation Format

Share Document